Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Therapeutics, Targets, and Chemical Biology

Overexpression of MBD2 in Glioblastoma Maintains Epigenetic Silencing and Inhibits the Antiangiogenic Function of the Tumor Suppressor Gene BAI1

Dan Zhu, Stephen B. Hunter, Paula M. Vertino and Erwin G. Van Meir
Dan Zhu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen B. Hunter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paula M. Vertino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erwin G. Van Meir
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/0008-5472.CAN-11-1157 Published September 2011
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Brain angiogenesis inhibitor 1 (BAI1) is a putative G protein–coupled receptor with potent antiangiogenic and antitumorigenic properties that is mutated in certain cancers. BAI1 is expressed in normal human brain, but it is frequently silenced in glioblastoma multiforme. In this study, we show that this silencing event is regulated by overexpression of methyl-CpG–binding domain protein 2 (MBD2), a key mediator of epigenetic gene regulation, which binds to the hypermethylated BAI1 gene promoter. In glioma cells, treatment with the DNA demethylating agent 5-aza-2′-deoxycytidine (5-Aza-dC) was sufficient to reactivate BAI1 expression. Chromatin immunoprecipitation showed that MBD2 was enriched at the promoter of silenced BAI1 in glioma cells and that MBD2 binding was released by 5-Aza-dC treatment. RNA interference–mediated knockdown of MBD2 expression led to reactivation of BAI1 gene expression and restoration of BAI1 functional activity, as indicated by increased antiangiogenic activity in vitro and in vivo. Taken together, our results suggest that MBD2 overexpression during gliomagenesis may drive tumor growth by suppressing the antiangiogenic activity of a key tumor suppressor. These findings have therapeutic implications because inhibiting MBD2 could offer a strategy to reactivate BAI1 and suppress glioma pathobiology. Cancer Res; 71(17); 5859–70. ©2011 AACR.

Footnotes

  • Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

  • Received April 1, 2011.
  • Revision received June 29, 2011.
  • Accepted June 30, 2011.
  • ©2011 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Cancer Research: 71 (17)
September 2011
Volume 71, Issue 17
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Overexpression of MBD2 in Glioblastoma Maintains Epigenetic Silencing and Inhibits the Antiangiogenic Function of the Tumor Suppressor Gene BAI1
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Overexpression of MBD2 in Glioblastoma Maintains Epigenetic Silencing and Inhibits the Antiangiogenic Function of the Tumor Suppressor Gene BAI1
Dan Zhu, Stephen B. Hunter, Paula M. Vertino and Erwin G. Van Meir
Cancer Res September 1 2011 (71) (17) 5859-5870; DOI: 10.1158/0008-5472.CAN-11-1157

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Overexpression of MBD2 in Glioblastoma Maintains Epigenetic Silencing and Inhibits the Antiangiogenic Function of the Tumor Suppressor Gene BAI1
Dan Zhu, Stephen B. Hunter, Paula M. Vertino and Erwin G. Van Meir
Cancer Res September 1 2011 (71) (17) 5859-5870; DOI: 10.1158/0008-5472.CAN-11-1157
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Authors' Contributions
    • Grant Support
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • ATR in Synovial Sarcoma
  • Cathepsin B Is Dispensable for Cathepsin B-Cleavable ADCs
  • RXRA and PPARG in Bladder Cancer
Show more Therapeutics, Targets, and Chemical Biology
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement