Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Tumor and Stem Cell Biology

hPuf-A/KIAA0020 Modulates PARP-1 Cleavage upon Genotoxic Stress

Hao-Yen Chang, Chi-Chen Fan, Po-Chen Chu, Bo-En Hong, Hyeon Jeong Lee and Mau-Sun Chang
Hao-Yen Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chi-Chen Fan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Po-Chen Chu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bo-En Hong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hyeon Jeong Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mau-Sun Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/0008-5472.CAN-10-1831 Published February 2011
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Human hPuf-A/KIAA0020 was first identified as a new minor histocompatibility antigen in 2001. Its zebrafish orthologue contains six Pumilio-homology RNA-binding domains and has been shown to participate in the development of eyes and primordial germ cells, but the cellular function of hPuf-A remains unclear. In this report, we showed that hPuf-A predominantly localized in the nucleoli with minor punctate signals in the nucleoplasm. The nucleolar localization of hPuf-A would redistribute to the nucleoplasm after the treatment of RNA polymerase inhibitors (actinomycin D and 5,6-dichlorobenzimidazole riboside) and topoisomerase inhibitors [camptothecin (CPT) and etoposide]. Interestingly, knockdown of hPuf-A sensitized cells to CPT and UV treatment and cells constitutively overexpressing hPuf-A became more resistant to genotoxic exposure. Affinity gel pull-down coupled with mass spectrometric analysis identified PARP-1 as one of the hPuf-A interacting proteins. hPuf-A specifically interacts with the catalytic domain of PARP-1 and inhibits poly(ADP-ribosyl)ation of PARP-1 in vitro. Depletion of hPuf-A increased the cleaved PARP-1 and overexpression of hPuf-A lessened PARP-1 cleavage when cells were exposed to CPT and UV light. Collectively, hPuf-A may regulate cellular response to genotoxic stress by inhibiting PARP-1 activity and thus preventing PARP-1 degradation by caspase-3. Cancer Res; 71(3); 1126–34. ©2011 AACR.

Footnotes

  • Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

  • Received May 27, 2010.
  • Revision received November 4, 2010.
  • Accepted December 3, 2010.
  • ©2011 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Cancer Research: 71 (3)
February 2011
Volume 71, Issue 3
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
hPuf-A/KIAA0020 Modulates PARP-1 Cleavage upon Genotoxic Stress
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
hPuf-A/KIAA0020 Modulates PARP-1 Cleavage upon Genotoxic Stress
Hao-Yen Chang, Chi-Chen Fan, Po-Chen Chu, Bo-En Hong, Hyeon Jeong Lee and Mau-Sun Chang
Cancer Res February 1 2011 (71) (3) 1126-1134; DOI: 10.1158/0008-5472.CAN-10-1831

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
hPuf-A/KIAA0020 Modulates PARP-1 Cleavage upon Genotoxic Stress
Hao-Yen Chang, Chi-Chen Fan, Po-Chen Chu, Bo-En Hong, Hyeon Jeong Lee and Mau-Sun Chang
Cancer Res February 1 2011 (71) (3) 1126-1134; DOI: 10.1158/0008-5472.CAN-10-1831
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Grant Support
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • mtDNA-Oncogene Cross-Talk
  • Alternative NFκB Regulates ALDH+ Ovarian Cancer Cells
  • JAM-C Identifies Leukemia-Initiating Cells in AML
Show more Tumor and Stem Cell Biology
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement