Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental and Molecular Therapeutics

Abstract 235: AXL inhibition leads to a reversal of a mesenchymal phenotype sensitizing cancer cells to targeted agents and immuno-oncology therapies

Katherine K. Soh, Wontak Kim, Ye Sol Lee, Peter Peterson, Adam Siddiqui-Jain, Steven L. Warner, David J. Bearss and Clifford J. Whatcott
Katherine K. Soh
Tolero Pharmaceuticals, Inc., Lehi, UT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wontak Kim
Tolero Pharmaceuticals, Inc., Lehi, UT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ye Sol Lee
Tolero Pharmaceuticals, Inc., Lehi, UT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Peterson
Tolero Pharmaceuticals, Inc., Lehi, UT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam Siddiqui-Jain
Tolero Pharmaceuticals, Inc., Lehi, UT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven L. Warner
Tolero Pharmaceuticals, Inc., Lehi, UT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David J. Bearss
Tolero Pharmaceuticals, Inc., Lehi, UT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clifford J. Whatcott
Tolero Pharmaceuticals, Inc., Lehi, UT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1538-7445.AM2016-235 Published July 2016
  • Article
  • Info & Metrics
Loading
Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA

Abstract

Mesenchymal properties and the epithelial-to-mesenchymal transition (EMT) contribute to the initiation and progression of many tumor types and ultimately can lead to drug resistance and highly aggressive disease. It is becoming increasingly clear that the more mesenchymal characteristics cancer cells acquire the more resistant they become to standard chemotherapy, targeted agents, and even immune checkpoint inhibitors. We have been exploring the role of the receptor tyrosine kinase, AXL, and its related TAM family members, in promoting the mesenchymal phenotype in cancer cells and how these effects promote drug resistance and escape from immune surveillance. TP-0903, a potent AXL inhibitor, leads to a reversal of the mesenchymal phenotype in multiple cancer models. Following TP-0903 treatment, we observed changes in mRNA expression using RT-qPCR and protein expression using standard immunoblotting that are consistent with a reversal of the mesenchymal phenotype. Upon treatment with TP-0903 cancer cells possessed lower motility and a decrease in anchorage-independent growth, both hallmarks of a mesenchymal cell. In vivo models of erlotinib-resistant non-small cell lung cancer (NSCLC) were utilized to demonstrate TP-0903 single agent activity in highly mesenchymal models; however, more importantly, treatment with TP-0903 was able to sensitize this highly refractory model to erlotinib. AXL function and tumor mesenchymal characteristics also provide mechanisms for the cancer cells to evade immune surveillance. This is achieved by the role that AXL plays in detecting neighboring apoptotic cells resulting in the engulfment of dead cells (efferocytosis) and the associated debris in order to prevent the immune system's exposure to auto-antigens under normal physiological conditions or exposure to cancer-associated neo-antigens in a tumor. Inhibition of AXL by TP-0903 can potentially inhibit tumor-associated efferocytosis leading to a stronger immunogenic response to the tumor. Indeed, results demonstrated synergy when TP-0903 was combined with an anti-PD-L1 agent in a syngeneic triple negative breast cancer mouse model. Interestingly, during the evaluation of TP-0903 in models of EMT, we detected dramatic change in the expression of the retinoic acid (RA) metabolizing protein CYP26A1, suggesting that AXL inhibition leads to changes in RA metabolism. Our data suggest that AXL induces a transition to a mesenchymal phenotype in cancer cells through the suppression of RA signaling and that TP-0903 can rapidly reverse this phenotype by signaling through RA causing the cell to revert to a more differentiated state. Due to its ability to reverse the aggressive mesenchymal phenotype of cancer cells, TP-0903 is a promising agent with the potential to have single agent activity and combined synergy with targeted anti-cancer agents and immunotherapies.

Citation Format: Katherine K. Soh, Wontak Kim, Ye Sol Lee, Peter Peterson, Adam Siddiqui-Jain, Steven L. Warner, David J. Bearss, Clifford J. Whatcott. AXL inhibition leads to a reversal of a mesenchymal phenotype sensitizing cancer cells to targeted agents and immuno-oncology therapies. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 235.

  • ©2016 American Association for Cancer Research.
Previous
Back to top
Cancer Research: 76 (14 Supplement)
July 2016
Volume 76, Issue 14 Supplement
  • Table of Contents

Sign up for alerts

Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abstract 235: AXL inhibition leads to a reversal of a mesenchymal phenotype sensitizing cancer cells to targeted agents and immuno-oncology therapies
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract 235: AXL inhibition leads to a reversal of a mesenchymal phenotype sensitizing cancer cells to targeted agents and immuno-oncology therapies
Katherine K. Soh, Wontak Kim, Ye Sol Lee, Peter Peterson, Adam Siddiqui-Jain, Steven L. Warner, David J. Bearss and Clifford J. Whatcott
Cancer Res July 15 2016 (76) (14 Supplement) 235; DOI: 10.1158/1538-7445.AM2016-235

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract 235: AXL inhibition leads to a reversal of a mesenchymal phenotype sensitizing cancer cells to targeted agents and immuno-oncology therapies
Katherine K. Soh, Wontak Kim, Ye Sol Lee, Peter Peterson, Adam Siddiqui-Jain, Steven L. Warner, David J. Bearss and Clifford J. Whatcott
Cancer Res July 15 2016 (76) (14 Supplement) 235; DOI: 10.1158/1538-7445.AM2016-235
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental and Molecular Therapeutics

  • Abstract 6237: Bone-targeted nanoparticle containing protein therapeutics as an effective delivery system for bone metastasis
  • Abstract 2932: CD59 facilitates tumor progression through activating TGF-β/Smad signaling pathway in hepatocellular carcinoma
  • Abstract 6415: RAF dimer inhibitor lifirafenib enhances the antitumor activity of MEK inhibitor mirdametinib in RAS mutant tumors
Show more Experimental and Molecular Therapeutics

Poster Presentations - Proffered Abstracts

  • Abstract PO-048: MicroRNA-10b is a regulator of cellular viability and proliferation in fibrolamellar carcinoma
  • Abstract PO-055: Pan-cancer metabolic profiling of the tumor microenvironment
  • Abstract PO-041: Genome-wide CRISPR/Cas9 screen reveals mitochondrial gene mutation as a driver for drug resistance in Ewing sarcoma
Show more Poster Presentations - Proffered Abstracts

Poster Presentations - Cellular Processes and Responses to Therapy

  • Abstract 253: Tetrandrine promotes prostate cancer cell apoptosis in part by up-regulation of death receptors
  • Abstract 256: Analysis of combined drug effects on hENT1 and hENT4 in pancreatic cancer cells
  • Abstract 240: Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer
Show more Poster Presentations - Cellular Processes and Responses to Therapy
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement