Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Tumor Biology

Abstract 4887: Comprehensive molecular analysis of pediatric thalamic tumors

Heloisa H. Moser, Susanne Yoon, Madhuri Kambhampati, Sridevi Yadavilli, Angela J. Waanders, Adam Resnick, Roger J. Packer and Javad Nazarian
Heloisa H. Moser
1Childrens National Health System, Washington, DC;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susanne Yoon
1Childrens National Health System, Washington, DC;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Madhuri Kambhampati
1Childrens National Health System, Washington, DC;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sridevi Yadavilli
1Childrens National Health System, Washington, DC;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Angela J. Waanders
2Children's Hospital of Philadelphia, Philadelphia, PA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam Resnick
2Children's Hospital of Philadelphia, Philadelphia, PA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger J. Packer
1Childrens National Health System, Washington, DC;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Javad Nazarian
1Childrens National Health System, Washington, DC;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1538-7445.AM2017-4887 Published July 2017
  • Article
  • Info & Metrics
Loading
Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC

Abstract

Childhood thalamic tumors are relatively rare cancers, accounting for 5% of all pediatric brain tumors and categorized as midline gliomas such as diffuse intrinsic pontine gliomas (DIPGs). We and others have shown that mutations in genes encoding for histone 3.3 (H3F3A), histone 3.2 (HIST2H3C) and histone 3.1 (HIST1H3B) along with their obligate partner mutations are the major driver mutations in DIPGs. Where recent studies have identified major histone partner mutations associated with DIPGs, more research is required to provide a clear landscape of genomic aberrations associated with thalamic tumors. We hypothesize that comprehensive whole genome sequence, methylation and proteome analysis of a large cohort of thalamic tumors will map differentially regulated pathways and identify potential novel driver and obligate partner mutations associated with thalamic gliomas. We have established a cohort (CNHS and CBTTC) of 128 thalamic specimens, including 56 pediatric and adolescent primary thalamic tumors with median age at diagnosis of 5.6 years (range 0-20 years); 40 normal controls with matched age and gender; and 32 midline tumors with potential thalamic involvement with median age at diagnosis of 7.6 years (range 0-19 years). Our cohort of primary thalamic tumors contained 31 (55.3%) and 19 (33.9%) tumors reviewed as high and low grade gliomas, respectively. From our midline tumors with potential thalamic involvement, 22 (68.7%) were classified as primary DIPG and 10 (31.2%) were other midline gliomas. Where available, MRI reviews and histopathological analysis were performed. Preliminary results showed that 7 of the extended tumors presented hypercellularity and positive histone 3 K27M staining, confirming that these tumors in fact extended to the thalamus as MRI showed. Additionally, Whole Exome Sequencing (WES) from one DIPG sample extending to the thalamus showed the same mutations found on the primary pons tumor: H3.1 K27M; ACVR1 G328V; PIK3CA H1047R; MAX R51Q and PTEN A126S. The remaining primary and extended thalamic tumors will be analyzed by WES to understand the molecular changes associated with this disease. In addition to our results, we analyzed the genomic landscape from pediatric thalamic tumors previously published (188), showing H3.3/H3.1 K27M (51%); BRAF (10.6%) and TP53 (8%) as the most frequent mutations among thalamic high and low grade astrocytomas. Further studies will allow us to compare comprehensive molecular analysis of thalamic tumors (primary and metastatic) and non-thalamic midline tumors (specimen and data already in hand) and identify similarities and differences in genomic, epigenomic and proteomic expression pattern which may guide a better characterization of thalamic tumor as a separate entity.

Citation Format: Heloisa H. Moser, Susanne Yoon, Madhuri Kambhampati, Sridevi Yadavilli, Angela J. Waanders, Adam Resnick, Roger J. Packer, Javad Nazarian. Comprehensive molecular analysis of pediatric thalamic tumors [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4887. doi:10.1158/1538-7445.AM2017-4887

  • ©2017 American Association for Cancer Research.
Previous
Back to top
Cancer Research: 77 (13 Supplement)
July 2017
Volume 77, Issue 13 Supplement
  • Table of Contents

Sign up for alerts

Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abstract 4887: Comprehensive molecular analysis of pediatric thalamic tumors
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract 4887: Comprehensive molecular analysis of pediatric thalamic tumors
Heloisa H. Moser, Susanne Yoon, Madhuri Kambhampati, Sridevi Yadavilli, Angela J. Waanders, Adam Resnick, Roger J. Packer and Javad Nazarian
Cancer Res July 1 2017 (77) (13 Supplement) 4887; DOI: 10.1158/1538-7445.AM2017-4887

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract 4887: Comprehensive molecular analysis of pediatric thalamic tumors
Heloisa H. Moser, Susanne Yoon, Madhuri Kambhampati, Sridevi Yadavilli, Angela J. Waanders, Adam Resnick, Roger J. Packer and Javad Nazarian
Cancer Res July 1 2017 (77) (13 Supplement) 4887; DOI: 10.1158/1538-7445.AM2017-4887
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
Advertisement

Related Articles

Cited By...

More in this TOC Section

Tumor Biology

  • Abstract 6119: RNAi rat models for drug discovery
  • Abstract 2723: XIAOPI formula inhibits breast cancer pre-metastatic niche formation via blocking TAMs/CXCL1 pathway
  • Abstract 3834: Histone methyltransferase SET8 is regulated by miR-192/-215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells
Show more Tumor Biology

Poster Presentations - Proffered Abstracts

  • Abstract PO-048: MicroRNA-10b is a regulator of cellular viability and proliferation in fibrolamellar carcinoma
  • Abstract PO-055: Pan-cancer metabolic profiling of the tumor microenvironment
  • Abstract PO-041: Genome-wide CRISPR/Cas9 screen reveals mitochondrial gene mutation as a driver for drug resistance in Ewing sarcoma
Show more Poster Presentations - Proffered Abstracts

Poster Presentations - Pediatric Cancer 3: Genetics and Genomics

  • Abstract 4885: Identification of actionable targets for refractory/relapsed childhood cancer leading to personalized targeted therapy (TRICEPS Study)
  • Abstract 4891: Identification of recurrent high-affinity MHC class I restricted neo-epitopes in neuroblastoma using ProTECT
  • Abstract 4881: Dissecting telomere maintenance mechanisms in neuroblastoma
Show more Poster Presentations - Pediatric Cancer 3: Genetics and Genomics
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement