Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Research
Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Focus on Computer Resources
      • Highly Cited Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Early Career Award
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citations
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Experimental and Molecular Therapeutics

Abstract 4782: STACT: A novel tumor-targeting, systemically-administered delivery platform capable of targeting intractable pathways and precise immunomodulation of the tumor microenvironment

Chris S. Rae, Marina Besprozvannaya, John Faulhaber, Anastasia M. Makarova, Beverly King, Laura Hix Glickman, Christopher D. Thanos and Justin Skoble
Chris S. Rae
Actym Therapeutics, Inc., Berkeley, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marina Besprozvannaya
Actym Therapeutics, Inc., Berkeley, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Faulhaber
Actym Therapeutics, Inc., Berkeley, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anastasia M. Makarova
Actym Therapeutics, Inc., Berkeley, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beverly King
Actym Therapeutics, Inc., Berkeley, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laura Hix Glickman
Actym Therapeutics, Inc., Berkeley, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher D. Thanos
Actym Therapeutics, Inc., Berkeley, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Justin Skoble
Actym Therapeutics, Inc., Berkeley, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1538-7445.AM2019-4782 Published July 2019
  • Article
  • Info & Metrics
Loading
Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA

Abstract

We have engineered a tumor-targeted, microbial immunotherapy platform called STACT (Salmonella Typhimurium (Attenuated) and Checkpoint Therapy). The platform strain has been engineered to increase tumor-specific enrichment, reduce immunosuppressive inflammation and enhance tolerability. Upon phagocytosis by tumor-resident immune cells, the microbe delivers plasmid DNA, which can either encode inhibitory microRNAs to knockdown immune targets of interest, or encode immuno-modulatory cDNA expression cassettes, alone or in specific combinations.

The STACT platform strain is over 10,000-fold attenuated for virulence due to disruptions in the msbB and purI genes, that result in the detoxification of the surface LPS and purine/adenosine auxotrophy, respectively. The STACT platform strain required addition of exogenous adenosine or purines at concentrations found in the tumor micro-environment, but not in healthy tissue for replication in vitro. The STACT platform strain was unable to replicate significantly in infected macrophage cell lines, but was able to colonize tumors in mice and deliver functional plasmids. This strain was further engineered by precise genome deletions of the fljB and fliC genes, encoding the bacterial flagellar subunits that are strong TLR5 agonists and induce inflammasome-mediated pyroptosis in macrophages. Deletion of the flagellin genes prevented bacterial cell motility but did not affect tumor-specific colonization after IV administration, and tumor enrichment was observed at levels over 100,000 times greater than in spleens. A plasmid maintenance system was engineered by deletion of the chromosomal asd gene and complementation of the asd gene on a copy-number optimized plasmid to ensure plasmid maintenance in vivo. The asd system allowed for significantly improved plasmid retention in vivo without antibiotic selection. Furthermore, the vector incorporates immunostimulatory CpG motifs into the strain to help promote a TLR9-mediated adaptive immune response to tumor antigens. A library of inhibitory RNAi’s against a set of immuno-modulatory targets, including TREX1, PD-L1, and TGF-beta were screened for optimal knockdown of gene expression by qPCR and western blot. Pairwise combinatorial knockdown of specific targets was also observed in human cells. IV administration of STACT encoding TGF-beta RNAi demonstrated significant tumor growth inhibition in a subcutaneous tumor model.

STACT is a highly attenuated microbial immunotherapy platform engineered to deliver immunomodulatory molecules to phagocytic cells in the tumor microenvironment after systemic administration. This platform can be engineered to knock down combinations of immune checkpoints or express immunostimulatory genes in a single therapeutic modality.

Citation Format: Chris S. Rae, Marina Besprozvannaya, John Faulhaber, Anastasia M. Makarova, Beverly King, Laura Hix Glickman, Christopher D. Thanos, Justin Skoble. STACT: A novel tumor-targeting, systemically-administered delivery platform capable of targeting intractable pathways and precise immunomodulation of the tumor microenvironment [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 4782.

  • ©2019 American Association for Cancer Research.
Previous
Back to top
Cancer Research: 79 (13 Supplement)
July 2019
Volume 79, Issue 13 Supplement
  • Table of Contents

Sign up for alerts

Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abstract 4782: STACT: A novel tumor-targeting, systemically-administered delivery platform capable of targeting intractable pathways and precise immunomodulation of the tumor microenvironment
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract 4782: STACT: A novel tumor-targeting, systemically-administered delivery platform capable of targeting intractable pathways and precise immunomodulation of the tumor microenvironment
Chris S. Rae, Marina Besprozvannaya, John Faulhaber, Anastasia M. Makarova, Beverly King, Laura Hix Glickman, Christopher D. Thanos and Justin Skoble
Cancer Res July 1 2019 (79) (13 Supplement) 4782; DOI: 10.1158/1538-7445.AM2019-4782

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract 4782: STACT: A novel tumor-targeting, systemically-administered delivery platform capable of targeting intractable pathways and precise immunomodulation of the tumor microenvironment
Chris S. Rae, Marina Besprozvannaya, John Faulhaber, Anastasia M. Makarova, Beverly King, Laura Hix Glickman, Christopher D. Thanos and Justin Skoble
Cancer Res July 1 2019 (79) (13 Supplement) 4782; DOI: 10.1158/1538-7445.AM2019-4782
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental and Molecular Therapeutics

  • Abstract 6237: Bone-targeted nanoparticle containing protein therapeutics as an effective delivery system for bone metastasis
  • Abstract 2932: CD59 facilitates tumor progression through activating TGF-β/Smad signaling pathway in hepatocellular carcinoma
  • Abstract 6407: A live cell method to assess E3 ligase and target protein occupancy for PROTACs
Show more Experimental and Molecular Therapeutics

Poster Presentations - Proffered Abstracts

  • Abstract PO-048: MicroRNA-10b is a regulator of cellular viability and proliferation in fibrolamellar carcinoma
  • Abstract PO-055: Pan-cancer metabolic profiling of the tumor microenvironment
  • Abstract PO-041: Genome-wide CRISPR/Cas9 screen reveals mitochondrial gene mutation as a driver for drug resistance in Ewing sarcoma
Show more Poster Presentations - Proffered Abstracts

Poster Presentations - Gene- and Vector-based Therapy

  • Abstract 4784: Combination of sorafenib with liver cancer-targeted gene therapy exerts synergistic efficacy against hepatocellular carcinoma
  • Abstract 4781: Preclinical assessment of efficacy and safety of novel oncolytic adenovirus for therapy of disseminated lung cancer
Show more Poster Presentations - Gene- and Vector-based Therapy
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement