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ABSTRACT

In humans and rabbits, differences in the rate of N-acetylation

of aromatic amines are under polymorphic genetic control. Indi
viduals are classified as either rapid or slow acetylators. In the
current study, the relationship between acetylator phenotype
and susceptibility to the genotoxicities of benzidine, 4-aminobi-
phenyl, 4,4'-methylenebis-2-chloroaniline, and 2-naphthylamine

was investigated. Cultured hepatocytes isolated from rapid and
slow acetylator rabbits were exposed to a dose range of the
aromatic amines, and genotoxicity was determined by the auto-

radiographic measurement of DNA repair synthesis. Hepatocytes
from rapid acetylator rabbits were more susceptible to the gen-

otoxic effect of benzidine than were cells from slow acetylators.
4-Aminobiphenyl and 4,4'-methylenebis-2-chloroaniline were

both weakly genotoxic, but no clear correlation was seen with
acetylator phenotype. No genotoxicity was observed with 2-

naphthylamine. These results thus demonstrate that differences
in acetylation rates can affect the genotoxicity of benzidine. This
study provides further evidence for the role of the genetically
determined acetylator polymorphism in determining susceptibility
to the effects of certain aromatic amine carcinogens. Since the
acetylator polymorphism is a human trait, a similar susceptibility
may be displayed in humans.

INTRODUCTION

The acetylator polymorphism is a genetically determined dif
ference in the A/-acetylation of a variety of aromatic amines and

hydrazines. In both humans and rabbits, individuals are either
rapid or slow acetylators, and slow acetylation is the recessive
trait (4,6,7,9,16). Sensitivity to the toxicity of drugs metabolized
by polymorphic A/-acetyltransferase (EC 2.3.1.5) has been linked

to the acetylator phenotype (3, 26). For example, slow acetyla
tors are more likely to develop drug-related systemic lupus
erythematosus (3, 28, 38) or peripheral neuropathy during ison-

iazid therapy (12, 13).
Differences in the capacity for A/-acetylation have also been

related to the species and tissue specificity of carcinogenic
aromatic amines. A species such as the dog, lacking A/-acetyl-

transferase activity (18, 29), develops only bladder tumors after
receiving a nonacetylated aromatic amine. If the acetylated de
rivative is given, both liver and bladder tumors develop (18). It
seems, then, that acetylation is necessary for the formation of
liver tumors by aromatic amines. Lower ef al. (17, 19) have
proposed that acetylator phenotype could affect susceptibility to
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the tumorigenic effects of aromatic amines in humans. Indeed,
an excess of slow acetylators has been observed among patients
who presented with late-stage bladder cancer and had been

exposed to aromatic amines previously (2).
Carcinogenic substrates of polymorphic A/-acetyltransferase

can be further metabolized to products capable of reacting with
DNA. DNA damage, a probable critical action of certain of these
carcinogens (10, 31), has been observed with benzidine (20, 21,
27, 30, 34), 2-aminofluorene (15, 24, 30), 4-aminobiphenyl (15,
34), 4,4'-methylenebis-2-chloroaniline (23), and hydralazine (24,

37). In order to investigate the relationship between acetylator
phenotype and genotoxicity, an in vitro system was developed
that permits measurement of W-acetyltransferase activity and

DNA damage in the same cell (24). This system uses rabbit
hepatocytes, since the rabbit displays acetylator polymorphism
(6,7,9), and liver is a major source of polymorphic A/-acetyltrans-

ferase (8, 18). In primary cultures of hepatocytes derived from
both phenotypes, in vivo differences in acetylation rates are
maintained, and DNA repair, an indicator of DNA damage, is
readily measured. This system was previously used to study the
effect of differences in acetylation rates on the genotoxicity of 2-

aminofluorene and hydralazine. Hepatocytes from rapid acetyla
tors were more sensitive to the genotoxic effect of 2-aminoflu

orene, while hydralazine induced greater damage in hepatocytes
from slow acetylators (24).

In the present study, the genotoxicities of benzidine, 4-ami
nobiphenyl, 4,4'-methylenebis-2-chloroaniline, and 2-naph

thylamine were investigated in hepatocytes from rapid and slow
acetylator rabbits. A phenotype-dependent difference in suscep
tibility to benzidine was demonstrated. 4,4'-Methylenebis-2-chlo-

roaniline and 4-aminobiphenyl were weakly genotoxic, but no

clear correlation could be made with acetylator phenotype. No
genotoxicity was observed with 2-naphthylamine.

MATERIALS AND METHODS

Materials. Williams' Medium E, calf serum, Hanks' balanced salt

solution, collagenase, Linbro dishes, and Thermanox coverslips were
obtained from Flow Laboratories, McLean, Va. [mef/jy/-3H]thymidine, 60

to 80 Ci/mmol, was purchased from New England Nuclear, Boston,
Mass. NTB emulsion, D-19 developer, and fixer were obtained from
Eastman Kodak Co., Rochester, N. Y. Benzidine, 4-aminobiphenyl, and
2-naphthylamine were obtained from Sigma Chemical Co., St. Louis,
Mo.; 2-aminofluorene was obtained from Aldrich Chemical Co., Milwau
kee, Wis.; and 4,4'-methylenebis-2-chloroaniline was donated by Dr.

Wendell W. Weber, University of Michigan.
Animals. New Zealand White rabbits, selectively bred for acetylator

phenotype, were provided by Dr. Wendell W. Weber, University of
Michigan. The animals were maintained and phenotyped as described
previously (24).

Hepatocyte Isolation and Culture. Hepatocytes were isolated by a
2-step perfusion of the liver of rapid and slow acetylator rabbits. The
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procedure described for rats (35, 36) was modified to accommodate the
larger animal (22, 24). Perfusion with 0.5 rtiM ethylene glycol bis(/3-
aminoethyl ether)-N,A/'-tetraacetic acid in Csf*- and Mg^-free Hanks'

balanced salt solution for 6 min at 70 ml/min was followed by perfusion
with collagenase, 100 units/ml, in Williams' Medium E for 10 min at 50

ml/min (22, 24). Only preparations with a viability, determined by trypan
blue exclusion, of greater than 80% were used. Approximately 5 x 105

viable cells were plated in Linbro dishes with each well containing a 25-
sq-mm round Thermanox coverslip and Williams' Medium E supple

mented with 10% calf serum. The cells were allowed to attach for 2 hr
at 37Â°in a 5% CO2 humidified incubator, then washed, and refed with
Williams' Medium E.

Hepatocytes cultured from rabbits of both phenotypes maintain the
differences observed in vivo (24). Enzyme activity in these primary
cultures was monitored by the rate of disappearance of sulfamethazine
from the culture medium as described previously (24). Sulfamethazine
concentrations were determined spectrophotometrically (11). The fi/2 for
sulfamethazine ranged from 2 to 3 hr in hepatocytes from rapid acety-

lators and 49 to 83 hr in cells from slow acetylators (24).
DNA Repair Assay. Immediately following cell attachment, the cul

tures were simultaneously exposed to 10 >iCi[3H]thymidine/ml, and the

test chemical dissolved in dimethyl sulfoxide. The final concentration of
dimethyl sulfoxide in the cultures was 1%. After 18 hr, the coverslips
were processed as described previously (33,34,36). Air-dried coverslips

were mounted on slides and dipped in NTB emulsion and were then
developed and stained after 10 days (36). Nuclear and cytoplasrnic grain
counts were determined using an Artek Model 880 counter (36). Net
nuclear counts were determined by subtracting the highest cytoplasrnic
count from the nuclear count. Negative net nuclear counts were consid
ered as zero in calculations of the mean counts. A net nuclear count of
at least 5 grains was necessary for a positive result.

Cytotoxicity of the test chemical was determined both by nuclear
morphology and the absence of S-phase cells. Misshapen, pyknotic, or

isolated nuclei were not counted. The use of these morphological criteria
of toxicity has been supported by studies with rat hepatocytes which
quantify cytotoxicity by the release of intracellular lactate dehydrogenase
(25).

RESULTS

The genotoxicity of 4 aromatic amine carcinogens was tested
in cultured hepatocytes from 3 rapid and 3 slow acetylator
rabbits. The N-acetyltransferase activities of these hepatocytes

was reported previously (24).
A phenotype-dependent difference in susceptibility to DNA

damage was observed with benzidine. Hepatocytes from rapid
acetylator rabbits showed substantial DNA repair synthesis at
10~6 M benzidine and maximum repair at 10~5 M (Table 1). At

higher concentrations, a decrease in DNA repair was seen,
presumably due to the cytotoxicity of benzidine. Hepatocytes
from slow acetylator rabbits showed no significant repair up to
10~4 M and only a low level at 10~3 M. At the concentration of

benzidine that elicited maximum repair in rapid acetylator hepa
tocytes, i.e., 1CT5M, 100% of the hepatocytes displayed repair

synthesis (5 or more net grains/nucleus). However, at the con
centration inducing maximum repair in slow acetylator hepato
cytes, i.e., 10~3 M, only approximately 50% of the cells were

positive (data not shown).
4,4'-Methylenebis-2-chloroaniline elicited a weakly positive re

sponse in hepatocytes from 3 of the 6 rabbits studied (Table 2).
Net nuclear grain counts of at least 5 were only observed in 2
rapid and one slow acetylator. There was variation among the
individual rabbits, but there was no correlation between acety
lator phenotype and the genotoxicity of 4,4'-methylenebis-2-

chloroaniline.
With 4-aminobiphenyl, results were similar to 4,4'-methylene-

bis-2-chloroaniline (Table 3). This chemical induced only a weakly

positive response in rabbit hepatocytes. Although this positive
response was observed in hepatocytes from all 6 animals, 50%
showed only the minimum of 5 net grains/nucleus. There was
no relationship between acetylator phenotype and susceptibility
to the genotoxicity of 4-aminobiphenyl.

Tabtel
Genotoxicityof benzidine in rabbit hepatocytes

Net grains/nucleus

Animal230237321243260262PhenotypeRapidRapidRapidSlowSlowSlow00.4
Â±0.6a0

Â±00.5
Â±0.50+00

Â±00.4
+ 0.410-7M15.2

Â±8.5NTNTNTNT2.2

Â±1.510-"

M44.4

Â±2.216.3
Â±0.745.6

Â±9.71.2

+0.50.9
Â±0.50.6
Â±0.310-Â»M>150>150>1502.5

+1.54.6
Â±2.11.2

Â±0.510-

M>150>15078.9+

14.02.0

Â±1.72.5
Â±1.61.1
Â± 0.610-3MT*3.9

+1.721.9
+2.67.5

Â±4.111.6
Â±2.62.0

Â±1.510-2MNTTTTTNT
a Mean Â±S.D. of triplicate coverslips.
13T, toxic; NT, not tested.

Table 2
Genotoxicityof 4,4'-methylenebis-2-chloroaniline in rabbit hepatocytes

Net grains/nucleus

Animal230237321243260262PhenotypeRapidRapidRapidSlowSlowStow00.4
+0.6Â°0

Â±00.5
Â±0.50+00

Â±00.4
Â±0.410-'

M7.4

Â±0.71.5
Â±1.61.1"1.0

+0.6NT0.3

Â±0.610"4

M12.9"1.7

+0.810.9
Â±2.80.6

+0.42.5
Â±1.00.5

Â±0.2SxlO-MIe1.2

Â±1.2TNT13.7

Â±1.71.9
+ 1.2IO-3*!T3.1

Â±0.6T0.6

Â±0.512.7Â°0.8

Â±0.910-2MTTTTTT
" Mean Â±S.D. of triplicate coverslips.
" Average of duplicate coverslips.
0 T, toxic; NT, not tested.
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Table3
Genotoxicity of 4-aminobiphenyl in rabbit hepatocytes

Netgrains/nucleusAnimal230237321243260262PhenotypeRapidRapidRapidStowStowStow00.4

Â±0.6a0

Â±00.5
Â±0.50+00

Â±00.4
Â±0.410-"

M0.9

Â±0.31.0
Â±0.21.2
Â±0.61.6

Â±1.30.5C0.2

Â±0.310~*M1.8

+0.21.8
+0.2NT3.2

Â±1.02.5
Â±3.60.2
+ 0.45

x10"4M5.9

Â±2.25.0Â°16.2

Â±8.4NT23.6C5.1

Â±2.610-'

MT*5.9

+2.3T10.4

Â±4.7TT10-2MTTTTTT

a Mean Â±S.D. of triplicate coverslips.
" T, toxic; NT. not tested.
c Average of duplicate coverslips.

Table 4
Genotoxicity of 2-naphthylaminein rabbit hepatocytes

Net grains/nucleus

Animal224237321243260262PhenotypeRapidRapidRapidStowSlowSlow00
Â±0"0

Â±00.5
+0.50+00

Â±00.4
+ 0.410-'

MNT01.3

+0.90.3C1.4Â±

1.11.1
Â±1.00

Â±0io-4Â«NT0.4

+0.30.7
+0.72.4

Â±0.30.6
Â±0.30.3
Â±2.810~3M0.3Â°0.5

Â±0.44.0
Â±1.21.5

Â±0.4T2.5

Â±1.210-2MTTTTTT
" Mean Â±S.D. of triplicate coverslips.
6 NT, not tested; T, toxic.
c Average of duplicate coverslips.

The final chemical tested was 2-naphthylamine. Although 2-
naphthylamine was cytotoxic at 10~2 M, it was not genotoxic to

hepatocytes from either phenotype (Table 4).

DISCUSSION

The role of N-acetylation in the formation of the ultimate

carcinogenic metabolites of aromatic amines has been investi
gated in hepatocytes from rapid and slow acetylator rabbits.
Hepatocytes in primary culture allow both N-acetyltransferase

activity and DNA damage, a probable mechanism of action of
some carcinogens (10, 31 ), to be studied in a single system.

A relationship between acetylator phenotype and genotoxicity
of certain xenobiotics has been demonstrated previously. He
patocytes from rapid acetylator rabbits were more susceptible
to the genotoxic effect of 2-aminofluorene, an aromatic amine,

than hepatocytes from slow acetylators (24). The results ob
tained in the current study show a similar relationship for another
aromatic amine, benzidine. Since chemicals of this class require
metabolism to reactive products that can damage DNA (32),
these results also provide evidence for the metabolic capabilities
of primary cultures of rabbit hepatocytes.

Several pathways for the metabolism of benzidine have been
proposed from in vitro studies with liver preparations. One path
way would involve conversion of benzidine to A/-acetylbenzidine,
then A/,N'-diacetylbenzidine, followed by A/-hydroxy-/V,A/'-diace-

tylbenzidine and nucleic acid binding (27). In a second pathway,
N-acetylbenzidine is hydroxylated to W-hydroxy-W-acetylbenzi-
dine, which is then acetylated to A/-hydroxy-A/,/V'-diacetylbenzi-
dine, which is subsequently converted to N '-hydroxy-W-acetyl-
benzidine (5). Both A/'-hydroxy-/V-acetylbenzidine and A/-hy-
droxy-A/,A/'-diacetylbenzidine are suggested as proximate car
cinogens of benzidine, and A/-(deoxyguanosin-8-yl)-A/'-acetyl-

benzidine has been identified as a DNA adduct (5, 20). In a third

pathway, cooxidative metabolism of benzidine and binding to
nucleic acid has also been demonstrated in renal medullary
microsomes (39). Acetylation, then, seems to be an important
step in the proposed metabolic pathways of benzidine in liver. In
a study with isolated rat hepatocytes, inhibition of A/-acetylation

resulted in a reduction in the genotoxicity of benzidine (1). The
results of the present study, in which hepatocytes with a rapid
rate of acetylation had a greater amount of DNA damage at a
lower dose than hepatocytes from slow acetylators, are thus
supportive of these previous observations.

Of the other aromatic amines studied, 4,4'-methylenebis-2-

chloroaniline and 4-aminobiphenyl were weak inducers of DNA

repair. Although there was variation among individual rabbits, no
correlation was seen between acetylator phenotype and geno
toxicity. One possible source of variability in response to chem
icals is the genetic heterogeneity of the animals. The rabbits
used in this study were selectively bred for acetylator phenotype,
but they were not an inbred strain. Interestingly, these 2 carcin
ogens were more active in rat hepatocytes (23, 34) and, in the
instance of 4,4'-methylenebis-2-chloroaniline, in mouse and

hamster hepatocytes (23). DNA repair was not induced by 2-

naphthylamine, a chemical with little or no carcinogenicity in the
rabbit (14).

In our studies on the role of acetylator polymorphism, pheno-
type-dependent differences in susceptibility to the genotoxic
effect of 3 chemicals, 2-aminofluorene (24), hydralazine (24), and

benzidine, have now been identified. The susceptible phenotype
varied with the structure of the genotoxic chemical. Hepatocytes
from rapid acetylators were more sensitive to the aromatic
amines, 2-aminofluorene (24) and benzidine, than were hepato

cytes from slow acetylators. In contrast, hydralazine induced
DNA repair in hepatocytes from slow acetylators, while little or
no repair was seen in the rapid phenotype (24). These results
provide evidence for the importance of genetically controlled
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differences in N-acetylation capacity in determining susceptibility
to aromatic amine carcinogens.
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