Radiohalogenation of a Monoclonal Antibody Using an N-Succinimidyld 3-(Tri-n-butylstannyl)benzoate Intermediate

Michael R. Zalutsky and Acharan S. Narula

ABSTRACT

N-Succinimidyld 3-(tri-n-butylstannyl)benzoate (ATE) was evaluated for its utility in the radiohalogenation of monoclonal antibodies. The F(ab')2 fragment of monoclonal antibody OC 125 was labeled with 125I using the ATE reagent and with 123I using a conventional electrophilic iodination method (Iodogen). N-Succinimidyld 3-[125I]iodobenzoate was synthesized from ATE in >90% yield and purified using a disposable silica gel cartridge. About 60-65% of the radiiodinated product was coupled to the F(ab')2 fragment after a 30-min reaction. Two procedures were investigated, one involving exposure of antibody to 35 nmol of ATE and the other to 240 nmol of ATE. Using Scatchard analyses, affinity constants for binding to CA 125 antigens for OC 125 F(ab')2, labeled using the low ATE, Iodogen, and high ATE procedures were determined to be (5.2 ± 1.0) × 108, (2.5 ± 0.9) × 108, and (4.2 ± 2.4) × 107 M⁻¹, respectively. Paired-label studies in athymic mice bearing OVCAR-3 tumors treated with injections of antibody labeled via both ATE and Iodogen demonstrated that use of the ATE method (a) reduced thyroid uptake to <0.1% of the injected dose, more than 100 times less than that observed with Iodogen; (b) resulted in more rapid clearance of activity from normal tissues; and (c) with the low ATE preparations, increased the uptake of radioactivity in tumor from 27 to 49%. At 96 h, tumor:tissue ratios were generally at least 4-fold higher when antibody was labeled via ATE. These results suggest that the ATE method may be a valuable approach for the radiohalogenation of antibodies.

INTRODUCTION

A significant problem affecting the diagnostic and therapeutic utility of radiolabeled monoclonal antibodies is the loss of nuclide from the antibody in vivo. Although the mechanisms involved and the labeled species which are formed are largely unknown, certain aspects of the pharmacokinetics of radioactivity following the administration of labeled antibodies appear to be related to separation of the nuclide from the protein in vivo.

When antibodies labeled with metallic nuclides such as 111In are administered to animals and patients, a large fraction of the injected dose is taken up by the liver (1–5). While to some degree, liver uptake of foreign proteins is not unexpected, there is evidence to suggest that liver accumulation of labeled catabolites, such as those resulting from the transchelation of nuclides such as 111In to ferroproteins, is also an important factor (6–9).

Catabolism of label from radiiodinated antibodies is reflected by uptake of 123I and 125I in the thyroid and the stomach (6, 10, 11). In addition, urinary excretion of high levels of non-protein-associated 123I activity has been reported in clinical studies with 125I-labeled antibodies (11, 12). A probable factor contributing to the dehalogenation of proteins in vivo is the recognition of labeled iodophenyl groups on the protein by deiodinases known to be involved in the metabolism of thyroid hormones (13).

Because of the potential utility of the radiohalogens 123I and the α-emitter 131I for radioimmunodiagnosis and radioimmunotherapy, respectively, our laboratory has been investigating the development of alternative strategies for protein labeling which could decrease the loss of radiohalogen from an antibody in vivo. We have recently described a new approach for the iodination of proteins which differs from conventional methods in that it does not involve the substitution of the iodine ortho to a hydroxyl group on an aromatic ring (14). A two-step procedure, radioiodination of ATE followed by conjugation of this intermediate to the protein, resulted in decreased thyroid uptake of radioiodine in comparison to proteins labeled by a conventional method, Iodogen (15).

We report herein our initial investigations concerning the utility of the ATE method for the radiohalogenation of monoclonal antibodies. Studies were performed using the F(ab')2 fragment of OC 125, an antibody against a human ovarian carcinoma-associated antigen (16). OC 125 F(ab')2, was labeled with 125I via ATE and with 131I using Iodogen and the labeled proteins were compared in vitro for their affinity for CA 125 antigen and in paired-label biodistribution studies, for selective uptake in OVCAR-3 tumors implanted in athymic mice.

MATERIALS AND METHODS

Monoclonal Antibody. OC 125 F(ab')2, was obtained as a gift from Dr. Jeffrey Mattis (Centocor, Malvern, PA). It is an IgG1 murine monoclonal antibody which was derived from the immunization of BALB/c mice with the OVCAC 433 cell line established from ascites fluid from a patient with papillary serous cystadenocarcinoma of the ovary (16). Purification of antibody from ascites fluid was accomplished using a DE52 ion exchange column as described previously (17). The F(ab')2 fragment was generated by a 16-h digestion of the purified IgG with 1% pepsin.

Antibody Labeling Using Iodogen. OC 125 F(ab')2 (150 µg in 120 µl of 100 mM phosphate buffer, pH 7.4) and 125I (DuPont-New England Nuclear, Boston, MA) were added to a glass tube containing 10 µg of Iodogen (Pierce Chemical Co., Rockford, IL) and allowed to react for 10 min. The labeled antibody was isolated by chromatography over a Sephadex G-25 column (Pharmacia, Piscataway, NJ). Protein-associated activity in the void-volume peak was determined by precipitation with 10% trichloroacetic acid. The protein concentration of the labeled product was determined using the Bio-Rad protein assay (Bio-Rad, Richmond, CA).

Antibody Labeling Using ATE. The synthesis of ATE as well as a detailed description of the radioiodination procedure have been described in a previous report (14). Briefly, to a 1-ml conical vial were added 125I (DuPont-New England Nuclear), 50 µl of 1 M acetic acid in CHCl3, 50 µl of 1 M 3-butyldihydropyridoxine in CHCl3, and 10 µl of 0.1 M ATE in CHCl3. The reaction mixture was stirred for 30 min at room temperature and then purified by passage over a silica gel Sep-Pak column eluted sequentially with 40 ml of hexane, 25 ml of 8% ethyl acetate in hexane, and 15 ml of 30% ethyl acetate in hexane. Iodine-125 labeled N-succinimidyl 3-iodobenzoate was eluted in the 30% ethyl acetate fraction.

Received 9/14/87; revised 12/10/87; accepted 12/16/87.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported in part by Grant CA 42324 from the National Cancer Institute.

2 To whom requests for reprints should be addressed, at Duke University Medical Center, Box 3808, Durham, NC 27710.
acetate fractions. In the “high ATE” experiments, all 15 ml of the 30% ethyl acetate eluant were used; in the “low ATE” experiments, the first 3 ml of eluant were discarded. Using methods previously described (14), it was estimated that the low and the high ATE preparations contained approximately 35 and 240 nmol of ATE, respectively.

The 30% ethyl acetate eluate was pooled and evaporated to dryness in a 1-ml glass vial. Approximately 150 μg of OC 125 F(ab')₂ in 50 μl of 100 mM borate buffer, pH 8.5, were added and the mixture incubated at 4°C for 30 min. The reaction was terminated by the addition of 0.3 ml of 0.2 M glycine in borate buffer. Purification of 125I-labeled OC 125 F(ab')₂ and the determination of trichloroacetic acid-precipitable activity and protein concentration were performed as described above.

Affinity Constant Determination. The human ovarian carcinoma OVCA 433 cell line was obtained from the American Type Culture Collection, Rockville, MD. CA 125 antigen was purified from the OVCA 433/PCA/4B fraction using the method of Davis et al. (18). To each well of a 96-well polystyrene plate were added 100 units of CA 125 in 50 μl of 10 mM sodium bicarbonate buffer, pH 8.6, and this was allowed to dry overnight. Blocking of the wells was achieved by a 1-h incubation with 5% BSA in 100 mM PBS. Nonspecific binding was determined using additional plates coated with BSA. Serial dilutions (0.2 to 4 nm) of each labeled antibody preparation in 50 μl 1% BSA/PBS were added to the wells in triplicate and the plates were incubated overnight at 4°C. The plates were washed 3 times with 1% BSA/PBS and the percentage of activity in each well was determined using an LKB 1282 Compugamma automated gamma counter (LKB; Turku, Finland). Affinity constants were calculated from Scatchard plots of the binding data using the EBDA/Ligand program developed by McPherson (19).

Tissue Distribution Measurements. N-Succinimidyl 3-[125I]iodobenzoate was diluted in 100 mM phosphate buffer. Thin layer chromatographic analyses (silica gel, 50% ethyl acetate in hexane) indicated quantitative conversion to m-125I (K, 0.22, a compound which is likely to be produced in the in vivo catabolism of proteins labeled using the ATE method). Male BALB/c mice weighing between 22 and 30 g were given i.v. injections of 5-10 μCi of both 131I and m-125I via ATE. Groups of 8-11 mice were sacrificed by ether overdose at 1, 2, 4, 6, 24, 48, 72, and 96 h. Tissues of interest were removed, washed with saline, weighed, and assayed for both 131I and 125I activity using the automated gamma counter. A correction was applied for cross-over between 7 and 25 mm in diameter. Mice were given i.v. injections of both 6-8 μCi (4 ng) of OC 125 F(ab')₂ labeled with 125I via ATE and m-125I-labeled m-125I to determine whether m-125I, a potential product formed in the catabolism of proteins labeled via ATE, cleared from the body more rapidly than iodide. Table 1 compares the thyroid uptake of 125I and 131I following the injection of m-125I (125IIBA and [131I]iodide. In order to ensure that the thyroid gland was removed, some proximal tissue (150-200 mg of muscle and trachea) was included in the sample. The percentage of injected dose of 125I in the thyroid is less than 0.1% at all time points except 4 h, when a thyroid uptake of 0.15% was seen. These levels are significantly lower (P < 0.0001) than those observed for 131I (9.5-25.7%). If these data are corrected for the presence of extrathyroidal tissue in the sample (using the percentage of uptake per g muscle as a correction factor), the reduced thyroid uptake following injection of mIBA is even more apparent.

The pharmacokinetics of radioiodide activity in the whole body, gastrointestinal tract, liver, blood, lungs, and spleen following injection of iodide and mIBA are compared in Fig. 1. In the kidney, maximum accumulation occurred 1 h after injection of both m-125IIBA (0.63%) and 131I-iodide (2.1%). One hour after injection of mIBA, whole body radioactivity had decreased to 10% of the injected dose, a value 6 times lower than that for iodide. Differences were most apparent in the tissues of the gastrointestinal tract where the levels of 125I were more than 20-fold lower than those of 131I. Counting of urine samples obtained at sacrifice demonstrated that the primary route of excretion for both nuclides was via the urinary system.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>% of injected dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.5 ± 3.8</td>
</tr>
<tr>
<td>2</td>
<td>16.6 ± 2.4</td>
</tr>
<tr>
<td>4</td>
<td>24.9 ± 7.8</td>
</tr>
<tr>
<td>6</td>
<td>20.2 ± 5.5</td>
</tr>
<tr>
<td>24</td>
<td>25.7 ± 2.1</td>
</tr>
<tr>
<td>48</td>
<td>19.0 ± 5.5</td>
</tr>
<tr>
<td>72</td>
<td>25.5 ± 5.6</td>
</tr>
<tr>
<td>96</td>
<td>17.3 ± 2.3</td>
</tr>
</tbody>
</table>

* Thyroid, including 150-200 mg of proximal muscle and trachea; 8-11 animals/group; mean ± SD.
* Significance of difference, P < 0.0001 at all time points.
RADIOHALOGENATION OF MONOCLONAL ANTIBODIES

Although the activity ranges observed in these samples were large, the average values of 57, 54, 6, and 2\% for 125I and 18, 16, 20, and 12\% for 131I at 1, 2, 4, and 6 h, respectively, were consistent with the whole body clearance data illustrated in Fig. 1.

Comparative Biodistribution of OC 125 F(ab')$_2$ Radioiodinated via ATE and Iodogen. Paired-label biodistribution measurements were performed to compare the extent of dehalogenation and tumor specificity of OC 125 F(ab')$_2$ labeled with 125I using the ATE reagent and with 131I using Iodogen. Since no statistically significant differences were observed in thyroid uptake between the low and the high ATE experiments, data from both sets of animals were combined and summarized in Fig. 2.

Table 2 Tissue distribution of 131I in athymic mice bearing OVCAR-3 tumors following injection of OC 125 F(ab')$_2$ labeled using the ATE reagent

<table>
<thead>
<tr>
<th>Tissue</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
<th>96 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>4.12 ± 0.88</td>
<td>0.88 ± 0.25</td>
<td>0.25 ± 0.09</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.77 ± 1.03</td>
<td>1.27 ± 0.31</td>
<td>0.34 ± 0.15</td>
<td>0.21 ± 0.07</td>
</tr>
<tr>
<td>Lung</td>
<td>0.53 ± 0.22</td>
<td>0.12 ± 0.04</td>
<td>0.06 ± 0.03</td>
<td>0.025 ± 0.011</td>
</tr>
<tr>
<td>Heart</td>
<td>0.08 ± 0.04</td>
<td>0.015 ± 0.003</td>
<td>0.023 ± 0.009</td>
<td>0.005 ± 0.0011</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.06 ± 0.42</td>
<td>0.08 ± 0.01</td>
<td>0.045 ± 0.015</td>
<td>0.018 ± 0.004</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.19 ± 0.06</td>
<td>0.06 ± 0.01</td>
<td>0.035 ± 0.005</td>
<td>0.014 ± 0.008</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.17 ± 0.08</td>
<td>0.06 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>0.014 ± 0.006</td>
</tr>
<tr>
<td>Large intestine</td>
<td>0.16 ± 0.07</td>
<td>0.034 ± 0.009</td>
<td>0.024 ± 0.008</td>
<td>0.007 ± 0.003</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.07 ± 0.03</td>
<td>0.009 ± 0.003</td>
<td>0.008 ± 0.004</td>
<td>0.003 ± 0.002</td>
</tr>
<tr>
<td>Bone</td>
<td>0.10 ± 0.03</td>
<td>0.038 ± 0.008</td>
<td>0.03 ± 0.01</td>
<td>0.013 ± 0.007</td>
</tr>
<tr>
<td>Blood</td>
<td>0.22 ± 0.09</td>
<td>0.046 ± 0.007</td>
<td>0.013 ± 0.005</td>
<td>0.013 ± 0.003</td>
</tr>
<tr>
<td>Tumor</td>
<td>2.61 ± 0.79</td>
<td>2.18 ± 0.46</td>
<td>1.56 ± 0.19</td>
<td>1.27 ± 0.47</td>
</tr>
</tbody>
</table>

The biodistribution of 125I activity after injection of 125I-labeled OC 125 F(ab')$_2$ prepared using the more stringent ATE purification procedure is summarized in Table 2. At 24 h, the highest concentration of activity was seen in the liver, OVCAR-3 tumor and spleen with less than 0.2\% of the injected dose per g tissue noted in the heart, muscle, bone, stomach, and intestines. The half-life for clearance of 125I from tumor was about 3 days. With the exception of the spleen, clearance of 125I from normal tissues occurred with half-lives of about 6 h.

Tumor to normal tissue ratios of radioiodine following injection of F(ab')$_2$ labeled using the ATE (35 nmol preparation) and the Iodogen methods are compared in Fig. 3. For all tissues except the spleen, higher tumor:tissue ratios were observed with antibodies labeled via the ATE method. At 96 h, tumor to blood, stomach, intestine, lung, and kidney ratios for F(ab')$_2$ labeled using ATE were more than 4 times higher than those for antibody labeled by the Iodogen method. Similar trends were observed in the paired-label experiments using OC 125.
F(\(ab\)')

exposed to a higher level of ATE; however, the magnitude of improvement in the specificity of tumor uptake was somewhat less.

In order to relate the more optimal tumor specificity of antibodies labeled via ATE to increased tumor uptake and/or decreased retention of nuclide in normal tissue, the ratio of 125I activity to 131I activity in each tissue was calculated for both the low and the high ATE experiments (Table 3). In the low ATE experiment, the concentration of 125I activity in the tumor was 27–49% greater than that of 131I. With the exception of the 96-h animals where a modest 10 ± 4% improvement was seen, antibody exposed to the higher level of ATE did not exhibit a statistically significant difference in tumor uptake when compared to antibody labeled via iodogen. The differences in the tumor 125I to 131I uptake ratios between the high and the low ATE procedures were significant (\(P < 0.01–0.001\)).

With the exception of the spleen, and at early time points the liver, use of the ATE method for antibody labeling reduced the uptake of radioiodine in normal tissues by as much as a factor of 10. Generally, the decrease in normal tissue accumulation was similar for antibodies exposed to both levels of ATE; however, at later time points, it appears that use of the low ATE preparation may offer a slight advantage.

DISCUSSION

Radiolabeled monoclonal antibodies are a promising approach to the diagnosis and treatment of cancer; however, their impact on the clinical domain remains somewhat limited. If the potential of antibody-mediated targeting of nuclides is to be exploited more fully, a number of problems must be addressed, not the least of which is the development of improved methods for radiolabeling monoclonal antibodies.

While the ideal approach for labeling each antibody will probably be different and may depend on the nature of the species created in the catabolism of the antibody should be considered: (a) the in vivo stability of the bond between the nuclide and the antibody should be maximized; (b) the labeled species created in the catabolism of the antibody should be excreted rapidly; and (c) the labeling process should not decrease the affinity of the antibody for its antigenic target. With these factors in mind, we have evaluated the utility of a new reagent, \(N\)-succinimidyl-3-(tri-n-butylstannyl)benzoate, for the radiodiodination of antibodies.

The most significant limitation of radioiodogenated antibodies for use in vivo is the loss of label from the antibody. Uptake of radioiodine in the thyroid, stomach, and intestines presumably reflects the fact that dehalogenation plays a critical role in the catabolism of radiiodinated antibodies. In paired-label tissue distribution measurements, we have observed that use of the ATE method for the radiiodination of F(\(ab\)')

fragments reduced the thyroid uptake of radioiodine by about a factor of 100 (Fig. 2) and decreased activity levels in the stomach by 2- to 5-fold (Table 3). It is worth noting that in a previous paired-label study using goat IgG, labeling via the ATE method reduced thyroid uptake of radioiodine by a factor of 2- to 15-fold (14). The greater decrease in thyroid uptake as a consequence of labeling OC 125 F(\(ab\)')

via ATE may be due to varying susceptibilities of different proteins to dehalogenation (11, 12).

In addition, several groups have reported that F(\(ab\)')

fragments are more resistant to catabolism than whole IgG (21–23).

Conventional iodination techniques such as the Iodogen method primarily result in the substitution of the iodine ortho to the hydroxy group on tyrosine residues. We believe that the greater retention of radioiodine on antibodies labeled using the ATE method is related to the generation of a nonphenolic, aromatic iodination site on the protein. Lack of a hydroxyl group on the aromatic ring decreases the structural similarity to iodotyrosines and iodothyronines, compounds for which multiple dehalogenating enzymes are known to exist (13). The absence of a hydroxyl group ortho to the halogen should also increase the strength of the carbon-iodine bond. A meta-substituted aryl halide was selected in order to avoid the loss of iodide due to nucleophilic substitution, as discussed previously (14).

One approach to decreasing the retention of radioisotope in normal tissues following the administration of labeled antibodies is to couple the nuclide in a chemical form which will be excreted rapidly following antibody catabolism. Degradation of proteins labeled using the ATE method should result in the production of iodide and \(m\)-iodobenzoic acid as labeled metabolites. The lack of thyroid uptake observed in the tissue distribution studies suggests that iodide is not a major catabolic product. When mlBA was injected into mice, whole body clearance of radioiodine was considerably faster than that of iodide. This is not surprising since benzoic acids are known to form glycine conjugates which are excreted rapidly via the urine as hippuric acid (24).

The importance of preserving the affinity of monoclonal antibodies for their antigenic targets after radiolabeling cannot be overemphasized. Badger et al. (25) and Herlyn et al. (26) have both shown that the concentration of radioactivity in a tumor decreased as the affinity constant of the labeled antibody decreased.

When OC 125 F(\(ab\)')

was exposed to the lower amount of unreacted ATE, the affinity constant of the labeled protein was about twice as high as antibody labeled using the Iodogen

| Table 3 | Ratio of \(^{125}\)I to \(^{131}\)I following injection of OC 125 F(\(ab\)')

| labeled with \(^{125}\)I using ATE and \(^{131}\)I using lodogen: results from experiments performed with 35 nmol (low) and 240 nmol (high) of ATE in \(N\)-succinimidyl 3-(\(\sim\)-butylstannyl)benzoate preparation |
|----------|----------|----------|----------|----------|----------|----------|----------|
| | Low ATE | High ATE |
| Liver | 1.51 ± 0.05 | 1.34 ± 0.06* | 1.33 ± 0.11 | 1.16 ± 0.36 | 1.06 ± 0.13 | 0.92 ± 0.21 | 0.58 ± 0.25 | 0.68 ± 0.20 |
| Spleen | 1.52 ± 0.20 | 1.15 ± 0.27 | 1.80 ± 0.09 | 1.59 ± 0.27 | 1.60 ± 0.27 | 1.94 ± 0.42 | 1.49 ± 0.14 | 1.88 ± 0.53 |
| Lung | 0.41 ± 0.10 | 0.43 ± 0.13 | 0.46 ± 0.24 | 0.67 ± 0.16 | 0.64 ± 0.25 | 0.51 ± 0.23 | 0.63 ± 0.31 | 0.42 ± 0.23 |
| Heart | 0.40 ± 0.13 | 0.33 ± 0.08 | 0.33 ± 0.02 | 0.70 ± 0.33* | 0.32 ± 0.07 | 0.58 ± 0.38 | 0.35 ± 0.06 | 0.61 ± 0.29 |
| Kidney | 1.43 ± 0.37 | 0.94 ± 0.18* | 0.52 ± 0.11 | 0.78 ± 0.26* | 0.32 ± 0.16 | 0.47 ± 0.17 | 0.21 ± 0.11 | 0.35 ± 0.16 |
| Stomach | 0.10 ± 0.05 | 0.14 ± 0.05 | 0.20 ± 0.05 | 0.21 ± 0.07 | 0.25 ± 0.03 | 0.28 ± 0.08 | 0.19 ± 0.04 | 0.37 ± 0.23* |
| Small intestine | 1.01 ± 0.39 | 0.58 ± 0.35 | 1.01 ± 0.16 | 1.34 ± 0.44 | 1.03 ± 0.28 | 0.31 ± 0.05* | 0.56 ± 0.29 | 0.76 ± 0.23 |
| Large intestine | 0.46 ± 0.12 | 0.35 ± 0.18 | 0.59 ± 0.22 | 0.51 ± 0.08 | 0.68 ± 0.12 | 0.29 ± 0.07* | 0.23 ± 0.10 | 0.20 ± 0.07 |
| Muscle | 0.77 ± 0.13 | 0.40 ± 0.13* | 0.53 ± 0.14 | 1.85 ± 1.18* | 0.58 ± 0.26 | 0.66 ± 0.29 | 0.35 ± 0.09 | 0.83 ± 0.26 |
| Blood | 0.52 ± 0.14 | 0.62 ± 0.31 | 0.51 ± 0.07 | 0.49 ± 0.26 | 0.39 ± 0.10 | 0.52 ± 0.26 | 0.34 ± 0.12 | 0.82 ± 0.26 |
| Tumor | 1.27 ± 0.25 | 0.86 ± 0.18* | 1.49 ± 0.07 | 1.02 ± 0.09* | 1.43 ± 0.11 | 1.04 ± 0.07* | 1.30 ± 0.06 | 1.10 ± 0.04* |

* Significance of difference between low ATE and high ATE experiment: \(P < 0.001\).
* Significance of difference between low ATE and high ATE experiment: \(P < 0.2\).
* Significance of difference between low ATE and high ATE experiment: \(P < 0.01\).

1449
RADIOHALOGENATION OF MONOCLONAL ANTIBODIES

method. However, reaction of F(ab')2 with preparations of N-succinimidyl 3-[125I]iodobenzoate containing higher levels of ATE decreased the affinity constant of the 125I-labeled antibody to about 5 times less than that measured for iodogen-labeled preparations. We speculate that the decrease in affinity may be due to coupling of the highly lipophilic ATE compound to amine sites on the protein or perhaps may be related to non-specific interactions of ATE with hydrophobic regions of the antibody. In addition to adversely affecting antibody affinity [at least for OC 125 F(ab')2], we have previously reported that exposure of proteins to relatively high levels of the ATE reagent decreased protein radioiodination yields (14).

In the high ATE paired-label biodistribution experiments, tumor uptake following injection of antibody labeled using ATE and Iodogen was quite similar suggesting that the lower affinity of the ATE preparation may have been offset by its greater stability in vivo. When the low ATE preparation was used, the combination of higher affinity and decreased loss of label in vivo resulted in a significant improvement in tumor uptake compared to iodogen-labeled antibody.

Thus, it is reasonable to assume that the superior tumor:normal tissue ratios observed with OC 125 F(ab')2 labeled using the ATE method (Fig. 3) may be due to a combination of improvements in inertness to deiodination in vivo, rate of clearance of labeled catabolites, and antibody affinity. It is interesting to note that in the spleen, and to some extent the liver, retention of radioiodine is greater with OC 125 F(ab')2 labeled via ATE. Since CA 125 antigen is shed into the circulation in the mouse model used in these experiments (27), it is possible that these differences reflect a differential rate of dehalogenation of labeled immune complexes in these tissues. Similar differences have been reported for the liver and spleen uptake of conventionally radioiodinated and 111In-labeled anti-carinoembryonic antigen antibodies in animal models (28).

In summary, the results reported in this investigation suggest that the ATE method holds great promise as an approach for the radiohalogenation of monoclonal antibodies. Experiments are in progress to investigate the utility of the ATE reagent for labeling other antibodies and their fragments.

ACKNOWLEDGMENTS

The authors wish to thank Cary Harrison and Susan Slade for excellent technical assistance.

REFERENCES

Radiohalogenation of a Monoclonal Antibody Using an N-Succinimidyl 3-(Tri-n-butylstannyl)benzoate Intermediate

Michael R. Zalutsky and Acharan S. Narula

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/48/6/1446

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/48/6/1446. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.