Stimulation by Localized Tumor Hyperthermia of Reductive Bioactivation of 2-Nitroimidazole Benznidazole in Mice

Michael I. Walton, Norman M. Bleehen, and Paul Workman

MRC Unit and University Department of Clinical Oncology and Radiotherapeutics, Hills Rd, Cambridge, CB2 2QH, UK

ABSTRACT

We have investigated the effects of localized tumor hyperthermia (LTH; 43.5°C x 30 min) on the reductive bioactivation of the 2-nitroimidazole benznidazole in C3H mouse normal tissues and KHT tumors. Mice were allocated to one of three treatment groups: (a) unrestrained controls, (b) sham tumor treatment, and (c) LTH. Concentrations of benznidazole and its amine metabolite were determined by high-performance liquid chromatography. Conscious mice were given LTH or sham treatment 2.5 h after 2.5 mmol/kg benznidazole i.p. This gave steady-state plasma benznidazole concentrations of 120–170 µg/ml at 2–5 h in all three groups. Plasma amine concentrations were very low at 0.1–1 µg/ml in all cases. Liver benznidazole concentrations were similar to plasma but amine concentrations were 30–40-fold greater at 20–40 µg/g in all three groups, implicating the liver as a major site of reductive metabolism. Benznidazole concentrations in tumors from unrestrained mice were comparable to those in plasma and liver, with tumor/plasma ratios of 85–113%. Tumor amine concentrations were intermediate at about 2–3 µg/g, indicating reductive bioactivation had occurred. Sham treatment decreased tumor benznidazole concentrations by 25–50%, particularly at later times, and amine concentrations were correspondingly increased. This may be a result of sham tumor treatment at 37°C, a temperature 3–4°C higher than in unrestrained controls. More importantly, LTH further decreased tumor benznidazole concentrations over sham treatment, e.g., by 59% from 114 to 47 µg/g (P < 0.01) immediately after heating. Amine concentrations were correspondingly elevated, e.g., by 40% from 5.1 to 8.4 µg/g (P < 0.01). These results clearly show that LTH can selectively enhance the reductive bioactivation of benznidazole in KHT tumors in mice, and support a particular role for the use of bioreductive agents with heat.

INTRODUCTION

Hypoxic tumor cells are resistant to radiation and certain common anticancer drugs (1). Strategies to overcome this problem include the use of 2-nitroimidazole radiosensitizers such as misonidazole which are also preferentially cytotoxic towards hypoxic cells, as well as local hyperthermia which can likewise be used to sensitize tumor cells to radiotherapy (2–4).

Previous studies combining misonidazole and LTH in mice have demonstrated enhanced tumor cytotoxicity (5, 6). On the basis of previous in vitro studies (7–9) this is probably due, at least in part, to heat-enhanced reductive bioactivation of the drug to cytotoxic species (10, 11). A number of enzymes have been implicated in this metabolic activation process (12, 13) which is highly sensitive to inhibition by oxygen (14). To date, however, there appears to have been no reported attempts to quantitate the effects of hyperthermia on reductive bioactivation in vivo.

Benznidazole is a lipophilic 2-nitroimidazole used in the treatment of Chagas' disease (15). It is as potent a radiosensitizer as misonidazole and also showed promise as a chemosensitizer in combination with the nitroreductase enzymes in the two tissues.

MATERIALS AND METHODS

Mice and Tumors. Adult male C3H/He mice were obtained from our own breeding colony or Olac Ltd. (Bicester, UK). They were allowed food (PRD nuts; Labsure, Poole, Dorset, UK) and water ad libitum, and were used at 24–33 g body weight.

The KHT sarcoma was grown in the gastrocnemius muscle of the hind right leg as previously described (23). Mice were treated when orthodiagonal tumor diameters reached 10–13 mm.

Drug Supply and Administration. Benznidazole [Ro 07-1051; Rada-nil; N-benzyl(2-nitroimidazoyl)-acetamide] and the analytical internal standard Ro 07-0602 [1-(2-nitroimidazoyl-1-yl)-3-n-butoxypropan-2-ol] were supplied by Roche Laboratories (Welwyn Garden City, Herts, UK). Benznidazole amine [Ro 10-1172; N-benzyl(2-amino-1-imidazoyl)acetamide] was supplied as the hydrochloride salt from Hoffmann La Roche (Basle, Switzerland). Benznidazole was prepared as a suspension in 50% polyethylene glycol (molecular weight, 400) in Hanks' balanced salt solution, and injected i.p. in a volume of 0.01 ml/g at a dose of 2.5 mmol/kg (650 mg/kg).

Localized Tumor Hyperthermia (LTH). Groups of three to four anaesthetized mice received a standard LTH treatment of 43.5°C x 30 min. This is equivalent to a heat dose (Eq 43) of 42.2 min (24). LTH was initiated 2.5 h after benznidazole administration using a microcomputer-controlled, combined radiofrequency-waterbath heating system described in detail elsewhere (25). Mice were given either drug alone, drug with LTH or drug with sham treatment. For the latter, mice were restricted in the perspex LTH jigs with PTFE-coated wires simulating rectal and tumor thermocouples in place. Jigs were then placed in a circulating waterbath (Grant Instruments, Cambridge, UK) set at 37°C. Mice were held in this way for 30 min, starting 2.5 h after benznidazole administration. All mice were loaded into the jigs 5–15 min before LTH or sham treatments. After LTH and sham-treatment mice were rubbed dry with tissue paper and briefly warmed under a 40-W lamp to prevent hypothermia.

Received 7/7/88; revised 1/13/89; accepted 1/23/89.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom requests for reprints should be addressed.

2 The abbreviations used are: LTH, localized tumor hyperthermia; HPLC, high-performance liquid chromatography; pO2, oxygen tension.
Core (rectal) temperatures were measured using a BAT-12 digital thermometer (± 0.1°C) fitted with a RET-3 murine rectal probe (Bailleys' Instruments, Saddle Brook, NJ).

Sample Preparation and Analysis. Samples were prepared essentially as previously described (26). Briefly, whole blood was obtained under diethyl-ether anaesthesia by cardiac puncture into heparinized syringes. Plasma was obtained by centrifugation at 3,000 × g for 15 min at 4°C, and stored at −20°C for up to 6 weeks prior to analysis. Plasma (200 μl) was treated with 2 volumes of methanol containing internal standard Ro 07 0602 (3 mg/l) thoroughly mixed and then centrifuged at 4,000 × g for 20 min at −15°C. Supernatants were evaporated to dryness in vacuo and residues resuspended in running buffer (100 μl) before injection (20-45 μl) into the HPLC apparatus for analysis.

Whole tumor and livers were excised rapidly. Livers were washed three times in cold distilled water (4°C) after gallbladder removal. Both tissues were quickly snap-frozen in dry ice to minimize ex vivo metabolism and stored as plasma. Liver and tumor homogenates (33% w/v in distilled water) were prepared in all-glass homogenisers and treated as for plasma. All samples were handled on ice.

Benznidazole and benznidazole amine concentrations in plasma and tissue samples were determined by reversed-phase HPLC as previously described (26). Briefly, chromatography was carried out on equipment and columns supplied by Waters Ass (Milford, MA). Separations were carried out on reversed-phase C18 Bondapak Rad-Pak cartridge columns, which were eluted isocratically with 25% acetonitrile in 0.2 mM glycine/hydrochloric acid buffer, pH 2.45, and containing 5 mM octane sulphonric acid at a flow rate of 3.5 ml/min. Benznidazole amine was detected at 229 nm and benznidazole at 313 and 229 nm. The lower detection limits were 80 and 120 ng/ml, respectively, for an injection volume of 30 μl. Coefficients of variation were typically 3-5%.

Statistics. Levels of significance were determined using the Student's t test.

RESULTS

Effects of LTH and Benznidazole on Tumor and Core Temperatures. In common with other 2-nitroimidazoles (27, 28), benznidazole (2.5 mmol/kg i.p.) decreased mouse core (rectal) temperatures from 37-38°C to 34-35°C. This decrease occurred 30 min after drug administration and lasted at least 6 h (data not shown).

LTH applied 2.5 h after a similar drug dose produced central tumor temperatures of 43.5°C within 5 min of heating. This resulted in a typical thermal dose (Eq 43) of 39.6 ± 0.87 min (mean ± 2 SE; N = 6), i.e., 94% of the prescribed dose. Rectal temperatures were lower than normal at between 32-35°C during LTH (data not shown).

Effects of LTH on Plasma Benznidazole and Amine Concentrations. Fig. 1 shows the plasma concentrations of benznidazole and its amine metabolite occurring in C3H mice administered benznidazole either alone or together with LTH or sham treatment. A, plasma benznidazole; ○, amine concentrations in unrestrained control mice; ○, plasma benznidazole; □, amine concentrations in mice bearing sham-treated tumors. O, plasma benznidazole; ●, amine concentrations in mice bearing locally heated tumors. Results are mean ± 2 SE. Pooled data from two to three independent experiments with five to nine mice per point. **, values significantly different from sham-treated mice (P < 0.01).

Liver benznidazole concentrations in mice bearing sham-treated tumors were very similar to unrestrained control values with liver/plasma ratios of 89-109%. However, the corresponding benznidazole amine concentrations were consistently elevated by 10-20 μg/g above unrestrained control values (P < 0.01 at 2.66 and 3 h). Nevertheless, the mean ratios of amine metabolite/total drug related material were almost identical at 29.1 ± 13.2 and 31.2 ± 5.5% (mean ± 2 SE; N = 25; P > 0.4) for unrestrained controls and sham-treated animals respectively. This is the most sensitive index of the extent of nitroreduction and it can be concluded that sham treatment had a relatively modest effect.

Localized tumor hyperthermia had no effect on either liver parent drug or amine metabolite concentrations compared to sham-treated mice (P > 0.05). The mean benznidazole liver/plasma ratios (± 2 SE) from 1–5 h were 95.8 ± 16.5% after LTH and 94.9 ± 15.5% after sham treatment (N = 25; P > 0.5). The corresponding ratios for liver amine metabolite/total drug related material were 34.1 ± 7.8 and 31.2 ± 5.5%, respectively (N = 25; P > 0.5). Thus LTH had no effect on nitroreduction in the host liver.

Effects of LTH on Tumor Benznidazole and Aamine Concentrations. Fig. 3 shows benznidazole and its amine metabolite in KHT tumors. Parent drug concentrations in tumors from unrestrained control mice reached a peak of about 150 μg/g at 1–
2.5 h, similar to that seen in plasma. Over the subsequent 4 h, tumor benznidazole concentrations were remarkably stable at around 140–180 µg/g. Corresponding amine metabolite concentrations over this period were 2–3 µg/g, intermediate between plasma and liver values.

Sham-treated tumors showed consistently lower benznidazole concentrations compared to those for unrestrained control mice (P < 0.05 at 2.66 and 5 h). Benznidazole amine concentrations were concomitantly elevated by between 0.6–5 µg/g in sham-treated tumors relative to unrestrained controls, and this difference was particularly clear at 3 and 5 h (P < 0.01).

Most importantly, Fig. 3 shows that LTH clearly reduced benznidazole concentrations by 25–59% in heated compared to sham-treated tumors. This difference was particularly marked during the heating period (P < 0.01).

Table 1 summarizes the benznidazole tumor/plasma ratios for these experiments. Steady-state ratios were achieved by 2.5 h in unrestrained control mice. The ratios of 85–113% between 2.5 and 5 h indicated excellent drug penetration. By comparison, benznidazole tumor/plasma ratios in sham-treated tumors were 47–80% between 2.66 and 5 h. Ratios were consistently lower than in tumors from unrestrained control mice, with significantly lower values at 3 and 5 h (P < 0.01 and P < 0.05, respectively). Localized tumor hyperthermia further decreased benznidazole tumor/plasma ratios by up to 59% compared to sham-treated values, with the more dramatic decreases occurring particularly during hyperthermia. For example LTH reduced average benznidazole tumor/plasma ratios over the interval 2.66–5 h by 47%, from 68.5 ±11.5 to 36.5 ± 18.6% (mean ± 2 SE, N = 28 and 26, respectively; P < 0.01).

Table 2 shows the ratio for amine metabolite/total drug-

Table 1 Summary of the benznidazole tumor/plasma ratios in C3H mice treated with benznidazole (2.5 mmol/kg i.p.) either alone, or in combination with LTH or sham tumor treatment

<table>
<thead>
<tr>
<th>Time after drug administration (h)</th>
<th>Benznidazole tumor/plasma (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unrestrained control</td>
</tr>
<tr>
<td>0.5</td>
<td>30.5 ± 14.0 (N = 6)</td>
</tr>
<tr>
<td>1.0</td>
<td>73.2 ± 7.1 (N = 6)</td>
</tr>
<tr>
<td>2.5</td>
<td>85.4 ± 18.0 (N = 6)</td>
</tr>
<tr>
<td>2.66</td>
<td>100 ± 8.5 (N = 5)</td>
</tr>
<tr>
<td>2.83</td>
<td>ND</td>
</tr>
<tr>
<td>3.0</td>
<td>94.4 ± 18.0 (N = 9)</td>
</tr>
<tr>
<td>5.0</td>
<td>113 ± 17.0 (N = 6)</td>
</tr>
</tbody>
</table>

* Values are mean ± 2 SE for N determinations. Results were derived using pooled data from two to three independent experiments.

ND, not determined.

P < 0.01 significantly different from sham treatment values.

Table 2 shows the ratio for amine metabolite/total drug-
stress or slightly elevated core temperatures on hepatic metab

relative to unrestrained control animals, possibly as a result of

restraint) gave a modest elevation in liver amine concentrations

motion that both LTH and sham treatment (i.e., both involving

sham and LTH treatments). However, there was a clear indica

(31). Liver concentrations of benznidazole were similar for

dazole also undergoes extensive metabolism to its amine in

amine concentrations in this tissue are consistent with a role

with plasma in unrestrained control mice after 1 h. The high

tions and LTH has also been reported to have little influence

similar to those for misonidazole (32) or pimonidazole (Ro 03-

30). The low plasma concentrations of benznidazole amine,

additional data from two to three independent experiments.

related material (metabolite conversion ratio). After equilibration

at about 1 h, this ratio was very low in tumors from unrestrained control mice (1.4–2.7%) reflecting a modest level of benznidazole reduction. Sham tumor treatment consistently increased these ratios compared to unrestrained controls, a trend which became significant particularly at later times (3–5 h, \(P < 0.05\)). LTH produced an impressive 2- to 4-fold elevation in this conversion ratio as compared to sham-treated tumors, with significant increases occurring throughout the heating period (2.67–3 h, \(P < 0.05\)). The average conversion ratio over this period was increased from 7.1 ± 3.4% in sham-treated tumors to 22.5 ± 8.9% with LTH (\(P < 0.01\)).

DISCUSSION

Using a sensitive HPLC technique we have shown that mouse liver and KHT tumor tissue readily catalyze the nitroreduction of benznidazole to its amine metabolite in vivo. Furthermore, localized tumor hyperthermia greatly enhanced this bioreductive metabolism in KHT tumors with minimal effects on plasma and liver concentrations.

Benznidazole concentrations in unrestrained control mice were in good agreement with previous observations (29, 30). The low plasma concentrations of benznidazole amine, representing <1% total detected drug-related material, were similar to those for misonidazole amine (31). Sham tumor and LTH treatment had minimal effects on plasma drug concentrations and LTH has also been reported to have little influence on either plasma misonidazole (32) or pimonidazole (Ro 03-8799) concentrations (33) in mice.

Liver benznidazole concentrations equilibrated completely with plasma in unrestrained control mice after 1 h. The high amine concentrations in this tissue are consistent with a role for liver as a major site of nitroreduction in vivo (30). Misonidazole also undergoes extensive metabolism to its amine in perfused hypoxic rat liver in vitro (34) and mouse livers in vivo (31). Liver concentrations of benznidazole were similar for sham and LTH treatments. However, there was a clear indication that both LTH and sham treatment (i.e., both involving restraint) gave a modest elevation in liver amine concentrations relative to unrestrained control animals, possibly as a result of stress or slightly elevated core temperatures on hepatic metabolism.

Table 2 Summary of the tumor amine metabolite/total drug ratios occurring in C3H mice administered benznidazole (2.5 mmol/kg i.p.) either alone or in combination with LTH or sham tumor treatment

<table>
<thead>
<tr>
<th>Time after drug administration (h)</th>
<th>Tumor metabolite/total drug (%)<sup>a</sup></th>
<th>Unrestrained control</th>
<th>Sham treatment</th>
<th>LTH treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>6.7 ± 5.0</td>
<td>ND<sup>b</sup></td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1.0</td>
<td>2.3 ± 0.6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>2.5</td>
<td>1.4 ± 0.4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>LTH</td>
<td>2.67</td>
<td>8.1 ± 1.6</td>
<td>4.3 ± 1.5</td>
<td>10.0 ± 3.6<sup>c</sup></td>
</tr>
<tr>
<td>(N = 6)</td>
<td>(N = 8)</td>
<td>(N = 4)</td>
<td>(N = 9)</td>
<td></td>
</tr>
<tr>
<td>2.83</td>
<td>ND</td>
<td>2.8 ± 2.6</td>
<td>13.5 ± 7.7<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>(N = 6)</td>
<td>(N = 8)</td>
<td>(N = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>2.2 ± 1.2<sup>c</sup></td>
<td>6.0 ± 2.3</td>
<td>21.6 ± 9.0<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>(N = 9)</td>
<td>(N = 5)</td>
<td>(N = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>1.8 ± 0.9<sup>c</sup></td>
<td>17.3 ± 14.2</td>
<td>50.6 ± 31.5</td>
<td></td>
</tr>
<tr>
<td>(N = 6)</td>
<td>(N = 5)</td>
<td>(N = 6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Values are mean ± 2 SE for \(N\) observations which were derived using pooled data from two to three independent experiments.

^b ND, not determined.

^c \(P < 0.01\) and \(P < 0.05\) significantly different from sham-treatment values.

The present study differs in at least three important respects from previous work. First, LTH was given when tumor drug concentrations were uniformly high and stable ruling out the possibility that decreased tumor benznidazole concentrations with LTH were a result of impaired tumor drug delivery or uptake. Second, concentrations of amine metabolite were measured alongside the parent drug to give a direct indication of bioreductive metabolism. Third, benznidazole reductive metabolism was monitored in locally heated tumors as well as unheated controls (32). Similarly, tumor/plasma ratios for pimonidazole were also shown to be significantly reduced when LTH was applied 5 min after drug administration (33).
bioreductive activation, in order to establish which nitroreductases are most suitable for thermal potentiation.

Additional mechanisms may also be important. LTH can decrease blood flow in certain rodent tumors (21), leading to decreased pO2 values (20, 36). Since benzimidazole reduction is highly oxygen-dependent (30) such changes would be likely to accelerate amine formation rates. Decreases in tumor pH after LTH have also been reported (37, 38), and might facilitate nitroreduction by enzymes more active under acidic conditions.

Hyperthermia has been reported to increase intracellular glutathione concentrations (39) which may enhance or decrease amine formation depending on the reaction stoichiometry.

The demonstration of a tumor-specific increase in nitroreductive bioactivation with LTH has important therapeutic implications. If LTH increases the amount of drug metabolized to cytotoxic species and, perhaps in addition, enhances the reactivity of the intermediates, then tumor cytotoxicity should be potentiated. Depending on the reactivity of these intermediates, damage may be confined to the hypoxic cells or extend to oxic cells located close by. This may apply not only to nitro compounds but also to other bioreductively activated drugs. The present results suggest that combination of LTH with such agents is a promising area for further study.

ACKNOWLEDGMENTS

We thank Dr. Carey Smithen (Roche Welwyn Garden City) for supplies of the nitroimidazoles and Drs. Brandt and Stoeckel (Hoffmann-La Roche) for benzimidazole amine. We are grateful to J. Shaw for care of the animals and J. Donaldson for excellent technical assistance. M. I. Walton thanks the Cancer Research Campaign for a research studentship award.

REFERENCES

Stimulation by Localized Tumor Hyperthermia of Reductive Bioactivation of 2-Nitroimidazole Benznidazole in Mice

Michael I. Walton, Norman M. Bleehen and Paul Workman