Characterization of the Epidermal Growth Factor Receptor in Human Glioma Cell Lines and Xenografts

Sandra H. Bigner, Peter A. Humphrey, Albert J. Wong, Bert Vogelstein, Joachim Mark, Henry S. Friedman, and Darell D. Bigner

ABSTRACT

Both permanent cultured cell lines and athymic mouse xenografts were established from two human glioblastomas. Biopsies from D-245 MG and D-270 MG contained amplified and rearranged epidermal growth factor receptor (EGFR) genes. Although the gene amplification and rearrangement seen originally was maintained in the xenografts, cultured cell lines established from these biopsies lost the amplified rearranged genes in vivo. Analysis of these cell lines and 11 additional permanent human glioma cell lines with normal EGFR gene copy number showed that 2.7 × 10^6 to 4.1 × 10^6 high affinity EGFRs/cell by radiodetection assay. The RNase A protection assay showed minimal differences in the quantity of EGFR mRNA among the 13 glioma lines, while the D-245 MG and D-270 MG xenografts expressed approximately 10–20 times as much EGFR mRNA as the corresponding cell lines. Immunoprecipitation of EGFR from these lines, including D-245 MG and D-270 MG, demonstrated only the intact M, 170,000 Da form, while truncated M, 145,000 Da and 100,000 Da EGFR proteins were immunoprecipitated from the D-270 MG and D-245 MG xenografts, respectively. These studies demonstrate that gliomas with amplification of the EGFR gene are capable of establishing in culture but that the amplified rearranged genes are not maintained. Possible explanations are that the abnormal genes are capable of establishing in culture but that the amplified rearranged genes are lost during serial passage or that the cells with amplified rearranged genes only represent a minor subpopulation of cells, which are unable to grow in culture. In either case, these observations suggest that high expression and structural abnormalities of EGFR proteins generated by amplification and rearrangement of the EGFR gene provide a growth advantage for gliomas in vivo but not in vitro.

INTRODUCTION

The EGFR3 gene is amplified in 30–40% of malignant human gliomas (1, 2). Many of these tumors show rearrangement of the amplified genes and these abnormal genes are maintained through propagation in athymic mice (3). The products of the amplified rearranged genes are usually smaller than the normal M, 170,000 Da EGFR, due to deletions involving the region which codes for the extracellular, EGF binding region of the protein (3–5).

Permanent cultured cell lines derived from malignant human gliomas express the EGFR. In contrast to glioma biopsies and xenografts, however, there have been reports of only two lines with amplified EGFR genes, and the level of amplification has been modest (6, 7). The two abnormal EGFR proteins which have been described in vitro are also different from those seen in vivo, in that one was an abnormally large M, 190,000 Da protein and the other one lacked low affinity receptors and failed to respond to EGF (7, 8). These findings suggest that, for gliomas, EGFR genes function differently in in vivo and in vitro environments.

Here, EGFR genes, transcripts, and proteins are characterized for two human glioma cell lines, D-245 MG and D-270 MG, and are compared with xenografts derived from the same glioma biopsies. Both xenografts contain amplified and rearranged EGFR genes which produce abnormally small EGFR proteins. The EGFR genes are not amplified or rearranged in the corresponding cell lines and the EGFR proteins which they express are normal in size and function. These observations demonstrate that xenografts from gliomas with amplified rearranged EGFR genes are appropriate models for studying the abnormal protein products of these genes, while the relevance of EGFR gene and protein function in cultured glioma cells remains to be defined.

MATERIALS AND METHODS

Cell Lines and Xenografts. D-245 MG and D-270 MG cell lines and xenografts were established from glioblastomas from a 70- and a 42-year-old man, respectively. Characterization of the D-245 MG cell line and both xenografts have been reported previously (3, 9). For comparison, cell lines including the A431 squamous cell carcinoma cell line obtained from Dr. Christa Stoscheck (Vanderbilt University) and 11 established malignant human glioma-derived cell lines were used. Lines with the prefix “U” were established at the Wallenberg laboratory in Uppsala by Ponten and Westermark and lines with the prefix “D” were established at Duke University Medical Center. All lines except D-336 MG have been characterized previously (9–11). D-336 MG was established at the Wallenberg laboratory in Uppsala by Ponten and Westermark and lines with the prefix “D” were established at Duke University Medical Center. All lines except D-336 MG have been characterized previously (9–11). D-336 MG was established at the Wallenberg laboratory in Uppsala by Ponten and Westermark and lines with the prefix “D” were established at Duke University Medical Center. All lines except D-336 MG have been characterized previously (9–11). D-336 MG was established at the Wallenberg laboratory in Uppsala by Ponten and Westermark and lines with the prefix “D” were established at Duke University Medical Center. All lines except D-336 MG have been characterized previously (9–11). D-336 MG was established at the Wallenberg laboratory in Uppsala by Ponten and Westermark and lines with the prefix “D” were established at Duke University Medical Center. All lines except D-336 MG have been characterized previously (9–11). D-336 MG was established at the Wallenberg laboratory in Uppsala by Ponten and Westermark and lines with the prefix “D” were established at Duke University Medical Center. All lines except D-336 MG have been characterized previously (9–11).

Cultures are routinely carried in Richter’s (13) improved minimal essential medium, which is supplemented with 10% heated-inactivated fetal calf serum, 10 μM N-2-hydroxyethyl piperazine N’-2-ethanesulfonic acid buffer, and 584 μg glutamine/liter, and are incubated at 37°C in a 5% CO2 atmosphere. The cell lines are tested every 10th passage for Mycoplasma contamination by testing the ability of the conditioned medium to convert deoxyadenosine to adenine (in the presence of an inhibitor of adenosine deaminase) and thymidine to thymine (14). Upon receipt in this laboratory, D-343 MG, U-373 MG, U-118 MG, and U-251 MG were contaminated with Mycoplasma. These lines were treated with 10 μg/ml chlorotetracycline daily and increasing periods of heating at 42°C for 2 months. Following treatment, they were grown in antibiotic-free medium for 4 weeks, retested, and found to be free of Mycoplasma. The other cell lines have been consistently negative for Mycoplasma contamination.

Chromosomal Analysis. The identity of each cell line and xenograft was confirmed by karyotype prior to the initiation of these studies. Xenografts were dissociated by incubation for 12–24 h in collagenase (8 mg/ml) in zinc option medium at 37°C. Cultured cells were passaged and cultured until they achieved exponential growth. Cells in both types of preparations were arrested in mitosis by treatment with colcemid, and chromosomal spreads were prepared and G-banded as described previously (15).

Tumorigenicity Testing. For D-270 MG, U-343 MG, and D-
336 MG, cells were grown in culture, resuspended in serum-free zinc option medium, and inoculated s.c. into 1-3 athymic mice/cell line at 1 x 10^5 cells/mouse. Tumorigenicity testing for the other 10 lines has been reported previously (9, 10).

Analysis for Gene Amplification by Hybridization. DNA was purified from cultured A431 cells and the 13 glioma lines and from frozen xenograft tissue derived from D-245 MG and D-270 MG, using methods detailed previously (16). Five to 7 ug of DNA were cleaved with EcoRI, separated by electrophoresis through a 1% agarose gel, blotted onto a nylon membrane, and hybridized with the EGFR probe labeled with [32P]-dCTP via the random primer method. Washing of filters and autoradiography were as described (16). The EGFR probe used was the 1.6-kilobase EcoRI fragment of pE7, a complementary DNA clone of EGFR mRNA generously provided by Drs. G. Merlino and I. Pastan (NIH) (17). The signals were removed by boiling, and the filters were rehybridized with a 1.0-kilobase EcoRI/Bam HI fragment of pNB containing part of the second exon of the N-myc gene (18).

Ribonuclease Protection. Total RNA was isolated by the acid-guanidium extraction method described by Chomczynski and Sacchi (19). The integrity of RNA was assessed by denaturing gel electrophoresis and staining with ethidium bromide. 32P-labeled RNA transcripts were generated in vitro from the 0.7-kilobase EcoRI fragment of pE7 cloned into the plasmid Bluescript using T3 or T7 RNA polymerase. Ribonuclease protection was performed as described by Winter et al. (20) with the following modifications: hybridizations were performed at 22°C in a final volume of 10 μL, only RNase A at 12.5 μg/mL was used, and the RNase A and proteinase K digestions were performed at room temperature for 30 min.

Binding of 125I-EGF to Glioma Cell Lines. Cells were plated in 24-well plates at 1.0 x 10^5 cells/well in 1 ml of zinc option medium containing 10% fetal calf serum. Incubation was for 18–24 h at 37°C. The wells were washed 3 times with 1 ml of binding buffer (20 mM N-2-hydroxyethyl piperazine N'-2-ethanesulfonic acid, 0.1% bovine serum albumin, pH 7.4), and 125I-EGF (Amersham) in binding buffer was added over a concentration range of 0–25 nM. Each concentration point was assayed in quadruplicate. Nonspecific binding was monitored by adding a 100-fold molar excess of unlabelled EGF (Collaborative Research) to four wells with the highest concentration of 125I-EGF. After a binding reaction of 1 h at room temperature, unbound 125I-EGF was aspirated from the plated glioma cells and the wells were washed 3 times with binding buffer. The cells were removed from the wells by the addition of 1 N NaOH for at least 1 h at 37°C, followed by transfer to tubes, which were counted in a Packard Auto Gamma spectrometer. The binding data were analyzed by the Scatchard method on an IBM PC/AT computer using the software program EBDA (equilibrium binding data analysis), written by G. A. McPherson (21, 22) and obtained from Biomedical Computer Technology Information Center (Vanderbilt University Medical Center, Nashville, TN 37232).

Immunoprecipitation of EGFR. EGFR from glioma cell lines was solubilized and immunoprecipitated as described (1), with modifications. Frozen (–70°C) cultured cells (1 x 10^6) or 10 mg of xenograft tissue were homogenized in 1 ml of ice-cold solubilization buffer and the well was used for autophosphorylation.

Autophosphorylation of EGFR. Autophosphorylation of the immunoprecipitated EGFR was performed as described (1). The EGFR-antibody-Protein A-Sepharose pellets were incubated with 30 μL of solubilization buffer plus 2 mM MnCl2 and 3 μCi of [γ-32P]-ATP (2000–3000 Ci/mmol; New England Nuclear). After 10 min at 4°C on ice, the reaction was terminated by the addition of 30 μL of 2 x Laemmli SDS-polyacrylamide gel electrophoresis sample buffer with 2% β-mercaptoethanol. Samples were boiled for 3 min and centrifuged. Supernatants were used in loading SDS-polyacrylamide gels.

SDS-Polyacrylamide Gel Electrophoresis and Autoradiography. The SDS discontinuous buffer system of Laemmli (25) with a 7.5% resolving gel was used. The high molecular weight standard mixture of myosin, β-galactosidase, phosphorylase b, bovine serum albumin, ovalbumin, and carbonic anhydrase (Sigma) was used to determine apparent molecular weights of the immunoprecipitated EGFR. Gels were stained with Coomassie blue R250, destained, and dried under vacuum. Autoradiography was performed by exposing Kodak AR-5 film for varying lengths of time (1–12 h) at ~70°C.

RESULTS

Chromosomal Analysis. Cells of D-245 MG xenograft in passage 28, D-245 MG cell line in passage 87, and D-270 MG xenograft in passage 10 had stemlines similar to those reported previously (3, 9). DMs were present in virtually all cells of both xenografts but could not be found in the D-245 MG cell line. Cells of the D-270 MG cell line were 47,XY,i(6p)t(1q13q)-,+ring,+1DMs (Fig. 1). None of the cell lines or xenografts contained homogeneously staining regions. Karyotypes of A431 and 6 of the remaining 11 glioma cell lines contained the same stemline karyotypes as had been reported previously (9, 11, 15, 26, 27). The five lines which have not had karyotypes published previously are as follows. D-37 MG: S=96–97, XX, −X, −X, −10, +11, +19, +20, −22, −22, +del(1)(q11), +i(q24), +del(7)(q21), +del(7)(q21), +t(9q22q), +t(9q22q), +der(3)(t(3;?)(p11;?), der(13)(t(13;?):(q32–42;?), der(21)(t(21;?)q22;?), +mar, +fragls (expressed as deviations from trisomy). D-336 MG: S=74, XXXY, −Y, −Y, −2, −4, −5, +7, −9, −9, −10, −11, −12, −13, −14, −14, −16, −16, −18, −19, −22, −22, +del(3)(q25), +del(11)(p11), +del(13)(q11q22), +del(12)(q10q12)(q11p11) (expressed as deviations from trisomy). U-373 MG: S=121–122, XXXXY, −4, +5, −10, −11, −13, +14, +14, −15, −18, −18, −19, +20, +21, −22, +i(3q), +i(3q), +del(6)(q16), +del(6)(q16), +del(6)(q16q21), +del(6)(q13q21), +del(6)(q13q21), + inv(9)(p11q13), +inv(9)(p11q13), +del(12)(q15q23), +del(12)(q15q23), +der(1)(17;?):(q31;?), +der(6)(t6;?):(q23;?), +der(16)(t11p16q), +der(16)(t11p16q), +der(16)(t11p16q), +der(16)(t11p16q), + DMS (expressed as deviations from pentaploid). U-410 MG: S=49, XY, +7, +7, −10, −10, +19 (cen), +del(1)(r1q10q), +der(19)(t13;19; q14q13). U-118 MG: S=96–98, XXXY, −Y, −4, −5, +11, −12, −16, −18, −19, +20, +20, −22, +i(1q), +del(3)(q13q33), + del(6)(q15q), +del(6)(p23q11), + del(6)(p23q11), + del(9)(p21), + del(9)(p21), + del(10)(p15), + del(10)(p15), +der(3)(3q15q)+1–5m (expressed as deviations from pentaploid).

Tumorigenicity. Cells from U-343 MGA2C2.6 grew progressively s.c. in 3 of 3 mice and could be serially transplanted into new generations of animals. Mice bearing D-270 MG and D-336 MG cells were observed for 1 year, but no tumors grew. Results of tumorigenicity testing for the other 10 lines have been reported previously, as follows. U-373 MG, U-118 MG, D-54 MG, D-263 MG, D-247 MG, and U-251 MG grew
progressively when inoculated s.c. into athymic mice (9, 10). D-37 MG, D-245 MG, and D-32/MGaCl2:6MG did not. U-410 MG grew initially but regressed (10).

Gene Number and Structure. Hybridization of DNA samples derived from the 13 glioma cell lines with the EGFR and N-myc probes showed only normal gene copy numbers. In particular, DNA from cell lines D-270 MG and D-245 MG showed no evidence for EGFR gene amplification or rearrangement, while xenografts derived from the same original tumors showed approximately 10–25-fold amplification of the EGFR gene and retained the same pattern of gene rearrangement as had been demonstrated in the biopsies from which they had been derived (Fig. 2).

Quantitation of EGFR mRNA. The RNase A protection assay (Table 1, Fig. 3) demonstrated that all of the cultured glioma cell lines varied by no more than 3-fold in EGFR mRNA content. In contrast, the D-270 MG and D-245 MG xenografts contained 8–10 times and >20 times as much EGFR mRNA, respectively, as did the corresponding cultured cell lines and also contained more mRNA than xenograft D-263 MG, which did not have EGFR gene amplification.

Quantitation of Glioma Cell Line EGFR Protein Expression by Scatchard Analysis of 125I-EGF Binding. Saturation curves of the direct binding of increasing amounts of 125I-EGF to cultured glioma cells are shown in Fig. 4. The Scatchard plots of these data were usually curvilinear (Fig. 5); the affinity constants and the number of EGFRs per cell for both the low and high affinity receptor classes are presented in Table 2. The glioma cell lines expressed a highly variable number of receptors, from 0.27 × 10^4 EGFRs/cell (U-251 MG) to 1.6 × 10^6 EGFRs/cell (D-37 MG). In comparison, the A431 squamous cell carcinoma line, which is known to express very high levels of EGFR, had 4.0 × 10^6 low affinity EGFRs/cell. The association constant of the EGF-glioma EGFR binding reaction also varied over wide range, from 2.5 × 10^7 M^-1 to 5.6 × 10^10 M^-1.

Apparent Molecular Weight of Glioma EGFR. Fig. 6 exhibits the relative sizes of 32P-EGFR immunoprecipitated from cultured glioma cells with monoclonal antibody Ab-1 (528) to the extracellular EGFR domain and with a polyclonal antibody reactive against the intracytoplasmic portion of EGFR (Ab-2913). The normal-sized Mr 170,000 Da EGFR was observed in all six glioma cell lines (Fig. 6, lanes 2–7 and 9–14) and the A431 squamous cell carcinoma line (Fig. 6, lanes 1 and 8); a Mr 150,000 Da proteolytic product was present in glioma U-343 MGaCl2:6 (Fig. 6, lanes 3 and 10). The Mr 170,000 Da bands in gliomas D-245 MG and D-37 MG are difficult to visualize at this autoradiographic exposure time (of 0.5 h) but were readily identified in longer exposures. Five additional glioma cell lines (U-373 MG, D-45 MG, U-410 MG, U-118 MG, and U-251 MG) expressed a normal-sized EGFR with
intrinsic kinase activity (data not shown). D-54 MG also expressed the previously described M, 190,000 Da variant (8). The extent of 32P incorporation into the glioma EGFR molecule, an indicator of the intrinsic EGFR tyrosine kinase activity, did not correlate with receptor number. Some cell lines with the higher receptor numbers (A431, U-343 MgaCl2:6, and D-247 MG) exhibited a more intense EGFR band than cell lines with lower receptor numbers (D-336 MG, D-270 MG, and D-245 MG), but other lines, such as D-37 MG, which also had large numbers of EGFR did not autophosphorylate well (Fig. 6, lanes 2 and 9).

![Fig. 2](image)

Fig. 2. Upper, Southern blot analysis of DNA from A431 cells (lane 1), normal human lymphocytes (lane 2), D-270 MG xenograft (lane 3) and cell line (lane 4), and D-245 MG xenograft (lane 5) and cell line (lane 6), cleaved with EcoRI and hybridized with the EGFR probe, demonstrates amplification of this gene in A431 cells and amplification and rearrangement of this gene in DNA from both glioma xenografts. In contrast, only normal copy numbers of unrearranged EGFR genes are seen in both glioma cell lines. Lower, the filter shown in the upper panel rehybridized with an N-myc probe demonstrates similar amounts of DNA in each lane.

![Fig. 3](image)

Fig. 3. RNase A protection of cell lines and xenografts. Total cellular RNA was hybridized with an 883-base antisense probe from the EGFR, cleaved with RNase A, and electrophoresed on a 6% acrylamide-urea gel. The RNAs used were from the cell lines U-410 MG (lane I), U-373 MG (lane 2), U-343 MgaCl2:6 (lane 3), U-118 MG (lane 4), U-251 MG (lane 5), D-32 Cl4 MG (lane 6), D-37 MG (lane 7), D-270 MG (lane 8), D-245 MG (lane 9), D-263 MG (lane 10), D-270 MG (lane 11), D-270 MG (lane 12), and D-336 MG (lane 13), the xenograft of D-245 MG (lane 14), and the xenograft of D-270 MG (lane 15).

![Fig. 4](image)

Fig. 4. Saturation analysis of 125I-EGF binding to 13 glioma cell lines. Increasing concentrations of 125I-EGF were added to glioma cells cultured in 24-well plates. Unbound 125I-EGF was removed by washing and glioma cells with bound 125I-EGF were harvested with 1 N NaOH. Binding was followed by gamma-spectrometry.

![Fig. 5](image)

Fig. 5. Scatchard plot of 125I-EGF binding to the glioma cell line D-37 MG, which expressed the highest level of EGFR. The curvilinear plot suggests two classes of EGFR.

![Table 1](image)

Table 1 EGFR mRNA in glioma cell lines and xenografts as determined by RNase A protection

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>Relative mRNA level</th>
<th>Xenografts</th>
<th>Relative mRNA level</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-37 MG</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-343 MgaCl2:6</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-247 MG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-336 MG</td>
<td>~1</td>
<td>D-270 MG</td>
<td>8-10</td>
</tr>
<tr>
<td>D-54 MG</td>
<td>~1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-410 MG</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-263 MG</td>
<td>~1</td>
<td>D-263 MG</td>
<td>~1</td>
</tr>
<tr>
<td>D-245 MG</td>
<td>>1</td>
<td>D-245 MG</td>
<td>>20</td>
</tr>
<tr>
<td>U-251 MG</td>
<td>~1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-32 Cl4 MG</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Table 2](image)

Table 2 Estimated affinity and number of EGF receptors on human glioma cell lines

<table>
<thead>
<tr>
<th>Receptor class</th>
<th>High affinity</th>
<th>Low affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell line</td>
<td>K<sub>a</sub> (m<sup>-1</sup>)</td>
<td>Receptors/cell</td>
</tr>
<tr>
<td>A431<sup>a</sup></td>
<td>1.5 x 10<sup>9</sup></td>
<td>1.3 x 10<sup>6</sup></td>
</tr>
<tr>
<td>D-37 MG</td>
<td>1.9 x 10<sup>9</sup></td>
<td>4.1 x 10<sup>6</sup></td>
</tr>
<tr>
<td>U-343 MgaCl2:6</td>
<td>3.0 x 10<sup>9</sup></td>
<td>2.5 x 10<sup>6</sup></td>
</tr>
<tr>
<td>D-247 MG</td>
<td>1.9 x 10<sup>9</sup></td>
<td>2.7 x 10<sup>6</sup></td>
</tr>
<tr>
<td>D-336 MG</td>
<td>7.7 x 10<sup>9</sup></td>
<td>7.2 x 10<sup>6</sup></td>
</tr>
<tr>
<td>D-270 MG</td>
<td>1.4 x 10<sup>9</sup></td>
<td>3.4 x 10<sup>6</sup></td>
</tr>
<tr>
<td>U-373 MG</td>
<td>2.6 x 10<sup>9</sup></td>
<td>1.2 x 10<sup>6</sup></td>
</tr>
<tr>
<td>D-54 MG<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-410 MG</td>
<td>2.5 x 10<sup>9</sup></td>
<td>1.1 x 10<sup>6</sup></td>
</tr>
<tr>
<td>D-263 MG</td>
<td>5.5 x 10<sup>9</sup></td>
<td>4.1 x 10<sup>6</sup></td>
</tr>
<tr>
<td>D-245 MG</td>
<td>5.3 x 10<sup>9</sup></td>
<td>1.8 x 10<sup>6</sup></td>
</tr>
<tr>
<td>U-118 MG<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-251 MG</td>
<td>3.3 x 10<sup>9</sup></td>
<td>0.27 x 10<sup>6</sup></td>
</tr>
<tr>
<td>D-32 Cl4 MG<sup>b</sup></td>
<td>2.9 x 10<sup>9</sup></td>
<td>1.0 x 10<sup>4</sup></td>
</tr>
</tbody>
</table>

^a A431 squamous cell carcinoma line.
^b Curvilinear Scatchard plots not obtained, so straight line fit was used to determine the affinity and receptor number for the one class of EGFR.

Fig. 7 presents a comparative electrophoretic pattern of 32P-
EGFR immunoprecipitated from glioma xenograft tissue and glioma cultured cells, which were derived from the same biopsy tissue. Monoclonal antibody Ab-1 (528) immunoprecipitated the intact M, 170,000 Da EGFR from both A431 xenograft tissue and A431 cell culture (Fig. 7, lanes 1 and 2). The normalized receptor was also immunoprecipitated from glioma cell lines and D-270 MG (Fig. 7, lane 3) and D-245 MG (Fig. 7, lane 5). In contrast, glioma xenografts D-270 MG and D-245 MG expressed a slightly smaller EGFR (D-270 MG) (Fig. 7, lane 4) and an EGFR which is not immunoprecipitated by the monoclonal antibody Ab-1 (528) reactive against the external domain (D-245 MG) (Fig. 7, lane 6). D-245 MG EGFR is immunoprecipitable by the antibody 2913 reactive against the intracytoplasmic portion of EGFR and is markedly smaller (with a doublet at M, 80,000 Da and 100,000 Da) (Fig. 7, lane 10) than the normal-sized M, 170,000 Da EGFR that is expressed by D-245 MG cell culture (Fig. 7, lane 9). The normal-sized M, 170,000 Da D-245 MG cell culture EGFR band in Fig. 7, lane 9, was more easily visualized at longer autoradiographic exposures and could be seen in Fig. 7, lane 5.

DISCUSSION

Permanent cultured cell lines derived from human neoplasms provide useful in vitro models for defining a variety of biological properties of these neoplastic cells. Gene amplification, in particular, has been studied in experimental settings in vitro, since this property can be maintained only under conditions of selective pressure.

The human tumor type which is best characterized for gene amplification both in vivo and in vitro is human neuroblastoma. While approximately 38% of resected neuroblastoma contain amplification of the N-myc gene, amplification of this gene characterizes virtually all permanent cultured neuroblastoma cell lines, suggesting that it is necessary for these cells to establish in culture (18, 28). For malignant gliomas, in contrast, 30-40% of biopsies contain amplification of the EGFR gene (1, 2). Among the more than 50 glioma cell lines which have been analyzed to date, however, there are only two examples of EGFR gene amplification, and both lines show only a modest increase in gene copy number (6, 7). There are several theoretical explanations for this observation. The demonstration that D-245 MG and D-270 MG, two gliomas with amplification of the EGFR gene, established in culture excludes the possibility that gliomas with amplification of this gene are not capable of establishing in culture and negates the possibility that gliomas with EGFR gene amplification have not been tested in culture for their ability to establish. For these two tumors, amplification and rearrangement of the EGFR gene, which was demonstrated in initial biopsies and xenografts, was lost as these tumors established in vitro. This observation suggests that the selective conditions in vivo which favor amplification of this gene are not present in culture. The inability of the D-245 MG and D-270 MG cell lines to grow when injected into athymic mice supports this concept. Furthermore, studies on NIH 3T3 cells show that transfection and overexpression of the EGFR can endow this cell line with the ability to grow in athymic mice (29).

The cultured lines D-270 MG and D-245 MG contain the number of EGFR gene copies appropriate for their copy number of chromosome 7, fail to show any rearrangement of this gene, and express appropriate amounts of structurally normal EGFR mRNA and protein for the number of gene copies which they contain. In this respect, they resemble the other glioma cell lines described here, which include three lines for which the initial biopsies were available and which did not contain EGFR gene amplification in initial biopsies and xenografts, was lost as these tumors established in vitro. This observation suggests that these abnormal proteins may be capable of functioning in the absence of EGF and, therefore, cells expressing these abnormal EGFRs may possess a growth advantage over cells expressing only the normal EGFR in the presence of low levels of EGF. It is not possible to determine the amounts of EGF accessible to glioma cells in vivo and in xenografts, and no exogenous EGF was added to the culture
medium used to generate and propagate these cell lines. Nevertheless, since transforming growth factor α mRNA is frequently expressed by glioma cell lines in culture (11), the possibility remains that higher levels of EGFR ligands may be present in vitro than in vivo and thus may remove the selective advantage imparted by the amplified rearranged EGFR genes.

Many glioma cell lines express platelet-derived growth factor and/or its receptor (11). Platelet-derived growth factor as well as other growth factors and hormones are present in fetal calf serum, raising the alternative possibility that differences in the levels of these substances between the in vitro and in vivo settings may be the selective pressure producing the loss or maintenance of EGFR gene amplification and rearrangement in these settings, respectively. Attempts to establish cultured cell lines from the D-270 MG and D-245 MG xenografts in defined media containing various growth factors may allow maintenance of the amplified and rearranged genes and may permit precise identification of the factors which interact with the EGFR in gliomas.

The observation that the amplified and rearranged EGFR genes were lost as D-245 MG and D-270 MG established in culture but were maintained in xenografts is in contrast to examples of squamous cell carcinomas such as A431 cells, where amplification of the EGFR gene appears to provide a growth advantage in vitro (30). One explanation for this difference is that the EGFR genes and proteins may function differently in glioma cells than in squamous cell carcinoma cells. Alternatively, the difference may be due to the nature of the rearrangements of the amplified EGFR genes in these two gliomas.

The high incidence of amplification and rearrangement of the EGFR gene in human gliomas is an interesting and undoubtedly biologically significant property of these tumors. Further analysis of the glioma cell lines and xenografts described here may provide insight into the way in which these amplified genes function in the in vivo and in vitro settings.

REFERENCES

Characterization of the Epidermal Growth Factor Receptor in Human Glioma Cell Lines and Xenografts

Sandra H. Bigner, Peter A. Humphrey, Albert J. Wong, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/50/24/8017

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/50/24/8017. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.