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Fig. 1. Hyperplasia in mouse skin treated with EPP or PMA. Mice were treated with acetone, EPP, or PMA and killed 48 h after the last treatment. The skins
were processed for histology as described. Test compound and treatments (twice weekly) are: (4) acetone 4 times; (B) PMA (2 ug) 4 times; (C) EPP (5 mg) 4 times;

(D) EPP (5 mg) 12 times. 4 to D, x 1600.

By the end of the experiment, however, many of the papillomas
were as large as those that occur with PMA promotion.
Ornithine Decarboxylase Induction. The ability of EPP to
induce epidermal hyperplasia suggested that exposure to EPP
would likewise produce an increase in ODC activity. As illus-
trated in Table 1, the level of ODC activity measured in extracts
from mouse skin treated with EPP was significantly elevated
over that of acetone controls. When measured 6 h after EPP
treatment, epidermal ODC activity increased up to 50 times
that of control levels. A good dose response increase in activity
was observed over the range of 1 to 5 mg of EPP. This increase
is similar to that induced by PMA treatment in these mice
(~100-fold increase). Time course studies over the period from
3 to 15 h revealed a peak of ODC induction at 6 h under the
conditions used here (Fig. 3), a level similar to that seen after
PMA treatment under these conditions (data not shown).
Vascular Permeability. To evaluate the effects of EPP on
vascular permeability, a component of inflammation, the skin
content of Evans blue dye was used as an indicator of these
changes. Time course studies showed an increase in the amount
of dye recovered from EPP-treated tissues that peaked at 9 h
(~12 times that of control) and then declined gradually there-
after (Fig. 4). This time course is the same as that seen following
PMA treatment (Ref. 25, and data not shown). The magnitude
of the change in permeability 6 h after treatment with EPP is

similar to that seen following PMA treatment (Fig. 4 inset;
PMA was ~14 times that of the control versus EPP, which was
~8 to 10 times that of the control).

Protein Kinase C. Previous reports have demonstrated the
activation and down-regulation of PKC following treatment of
mouse skin with PMA (10, 23). Because this event is thought
to be the controlling event in PMA-induced tumor promotion,
the down-regulation of PKC following EPP treatment was
measured. Whereas the application of 2 ug PMA to mouse skin
leads to down-regulation of PKC at 48 h (75 to 95% down-
regulation; 28 + 17% of control activity, n = 4), application of
5 mg of EPP applied to the skin results in less than a 20%
reduction in PKC activity 48 h after treatment (Fig. 5). The
total PKC activity (as percentage of control) seen 48 h after
treatment with 5 mg of EPP averaged 82 + 32% (n = 4). The
values obtained for EPP were not significantly different from
those for acetone, whereas values for PMA were significantly
different from those for acetone and for EPP at P > 0.05
(Fisher’s Protected Least Significant Difference). A 24-h time
point following EPP treatment also failed to show reduction in
PKC activity to the degree seen following PMA treatment (data
not shown). No differences in the column elution profiles or
peak fractions were observed with epidermal samples from
acetone-, EPP-, or PMA-treated mice, with respect to PKC
activity (Fig. 5).
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Fig. 2. EPP-induced tumor promotion. Groups of 30 inbred SENCAR (SSIN)
mice were initiated with DMBA and promoted with EPP or PMA as described.
The data are presented as the percentage of mice with tumors (4) and the average
number of tumors per mouse (B). Treatment groups are: (], initiation with 10
nmol DMBA and promotion with § mg EPP (Group A); A, 100 nmol DMBA
for initiation and S mg EPP for promotion (Group B); B, 100 nmol DMBA
initiation and 3 mg EPP for promotion (Group C); A, 10 nmol DMBA initiation
and 1 ug PMA for promotion.

Table 1 ODC induction by EPP and PMA

Mice were treated with EPP or PMA as indicated and killed 6 h later. The
epidermis wa scraped from the skins, and the ODC activity was measured as
described under “Materials and Methods.”

ODC activity
(nmol CO,/
Treatment Dose mg/h)

Acetone 0.042 £ 0.031°
PMA 2.ug 4.519 + 1.317°
EPP 1mg 0.059 £ 0.028
EPP 3mg 0.694 + 0.346
EPP Smg 2.257 + 0.888°
EPP 7mg 2.078 + 0.860°

“Mean + SEM,n 2 7.
® Significantly different from acetone (P > 0.001, Fisher's Protected Least
Significant Difference).

Phorbol ester tumor promoters also have the ability to replace
the Ca?* requirement of PKC for in vitro activation (24). Non-
phorbol ester-type promoters do not bind to or activate PKC
in vitro (26, 27). The addition of 1, 10, or 100 ug/ml EPP in
the absence of Ca?* to in vitro reaction mixtures failed to
activate PKC, whereas the addition of 1 ug/ml of PMA (Fig.
6) in the absence of Ca** resulted in an increase in PKC activity
greater than that seen with the addition of 2 mm Ca?* (62.1 +

7.7 versus 44.0 £ 7.6 pmol/mg protein/10 min for PMA and
Ca?*, respectively).

DISCUSSION

One approach to elucidating the mechanism of action of
tumor promoters, such as PMA, has been to study compounds
that have biological activities similar to that of PMA but that
lack the abiiity to promote tumor formation. Such comparisons
with complete promoters should allow for the identification of
those biological effects induced by promoters that are critical
to the tumor promotion process. The hyperplasiogenic irritant
EPP was chosen for this study based on reports which consid-
ered this compound to be nonpromoting, although it induced
many of the morphological and biological effects seen following
PMA treatment (12, 16).

Preliminary studies indicated that historical dose levels (10
to 15 mg/treatment) were extremely toxic to mouse skin, as
evidenced by severe ulceration and sloughing of the epidermis.
The study reported here used reduced levels of EPP, which
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Fig. 3. Time course of EPP-induced ODC activity. Mice were treated with §
mg EPP and killed at the times indicated. ODC activity in the epidermis was
measured as described by incubation of homogenate aliquots with [**Clornithine.
Values, mean + SEM (bars) (n = 8) of EPP-treated mice.
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Fig. 4. Time course of EPP-induced vascular permeability. Mice were treated
with 5 mg EPP and then killed at the 3-h intervals indicated. Thirty min before
being killed, they were given injections of Evans blue dye as described. The dye
was extracted from 1-cm? sections of skin and quantitated spectrophotometrically
at 620 nm. Values, mean + SEM (bars) (n = 5) from mice treated with EPP.
Inset, comparison of vascular permeability induced by EPP (5 mg) and PMA (2
mg) 6 h after treatment (mean + SEM, n = 6). Values for EPP and PMA are
significantly different from those for acetone (4CE) (P> 0.001, Fisher’s Protected
Least Significant Difference).
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Fig. 5. PKC down-regulation following EPP and PMA treatment. Mice were
treated with acetone, EPP (5 mg), or PMA (2 ug) and killed 48 h later. The
epidermis from the dorsal skin was removed, and PKC was partially purified by
DEAE-cellulose chromatography as described. PKC specific activity was assayed
as described by incubation of fraction aliquots with [y->?PJATP and H1 histone
in the presence and absence of phospholipid and Ca**. A representative experi-
ment is shown. PKC activity of EPP-treated skins averaged 82% of the acetone
value, whereas PMA-treated skins averaged only 28% (n = 4). Treatment groups
are: [J, acetone; B, EPP; @, PMA.

produced no such effects in the skin and allowed sustained
epidermal hyperplasia with repeated application. The data from
our study support the conclusion that EPP is a moderately
effective tumor promoter. Although the number of epidermal
tumors (approximately five tumors/mouse) induced by EPP is
lower than is seen following PMA promotion, it does equal
tumor numbers seen with promotion by other moderate tumor
promoters such as benzoyl peroxide (28). Also, the high inci-
dence of tumors, up to 100%, and the fact that the response
appears to be dose dependent argues strongly for the complete
tumor-promoting activity of EPP. Although these data and
their interpretation may appear to vary somewhat from previous
reports (2, 12, 16), it should be noted that we have lowered the
EPP dose to a relatively nontoxic level and are using mice that
were selected for sensitivity to the tumor promotion process.
The higher doses used in previous studies may have been toxic,
thus negating the tumor-promoting activity of EPP. Addition-
ally, we believe that the studies reported by Raick (12) demon-
strate evidence for the complete tumor-promoting activity of
EPP in Swiss-Webster ICR mice in that an average of one
tumor/mouse was observed.

Also, the application of EPP to mouse skin produces mor-
phological and biochemical changes similar to those observed
following treatment with other known tumor promoters. These
events include sustained hyperplasia, the induction of ODC
activity, and increased vascular permeability.

Histological comparison of mouse skin exposed four times
to EPP or PMA showed that both compounds elicited a hyper-
plastic response, with PMA producing a more pronounced
hyperplasia than EPP. However, the dose of PMA (2 ug) was
slightly higher than that normally used for tumor promotion in
this strain of mouse and may have accounted for some of the
difference. Ater 12 treatments with EPP, the skin exhibited a
degree of hyperplasia comparable to that produced by PMA
(single or multiple PMA treatments). This delayed response to
EPP may explain the delayed appearance of tumors in EPP-
treated mice compared with PMA-treated animals (11 to 13
weeks for EPP versus 5 to 6 weeks for PMA). These results are
in agreement with previous work that documented the ability
of EPP to induce epidermal hyperplasia (12, 16, 29). The
literature also indicates that EPP treatment results in an in-

creased number of dark keratinocytes in the epidermis, although
the number is smaller than is seen following PMA treatment
5, 15, 29).

The induction of ODC activity is considered to be an essential
event in tumor promotion and is characteristic of all tumor
promoters. ODC induction by EPP follows a time course very
much like that produced by PMA, with a peak of activity
between 6 and 9 h. The extent of ODC induction (~50 times
that of acetone controls) was fully one-half that produced by
PMA and is in concordance with its promoting activity when
compared with PMA. Previous studies have reported either no
induction (30) or ODC induction of 6, 28, and 30 times that of
controls (7, 31, 32).

Our study also demonstrated the ability of EPP to induce
vascular permeability as measured by dye leakage in treated
skin. These observations are in agreement with previous reports
of increased permeability (13) and increased dermal cellular
infiltrates (15) following EPP treatment. There are other re-
ports that indicate that EPP produces responses similar to
PMA, although to a smaller extent. These include increased
protein synthesis (33), lipid peroxidation (34), sister chromatid
exchange (35), and xanthine oxidase levels (36).

The phorbol ester-type tumor promoters act through a cell-
ular receptor, PKC (10, 11). Other, non-phorbol ester pro-
moters, such as palytoxin and thapsigargin, do not appear to
interact with PKC (26, 27), nor do they induce ODC activity.
EPP may be a tumor promoter of a type different from either
the phorbol ester type or the non-phorbol esters such as paly-
toxin or thapsigargin, since it induces ODC activity but does
not down-regulate PKC. Donnelly et al. (37) have previously
reported a lack of effect by EPP on PKC down-regulation. The
possibility cannot be ruled out, however, that EPP effects are
mediated via only one or more isozymes of PKC, or that EPP
may bind to PKC with very low affinity and thus produce only
minimal activation. Either of these could account for the obser-
vation in this study that EPP treatment resulted in a 20% down-
regulation of PKC (>80% for PMA) and a 50-fold increase in
ODC activity (100-fold for PMA). Overall, it appears that EPP
works through a mechanism independent of PKC and that the
small amount of apparent down-regulation is not significant
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Fig. 6. Lack of activation of protein kinase C by EPP. Protein kinase C was
partially purified from epidermal cells, as described under “Materials and Meth-
ods.” Kinase activity was determined in the presence or absence of Ca** (2 mm),
EPP (doses used are ug/ml), or PMA (1 ug/ml) by measuring the incorporation
of 2P from [y-**PJATP into histone. Values [mean + SEM (bars)] are calculated
as pmol (non-enzyme background subtracted)/mg protein/10 min. The experi-
ment was repeated three times using duplicates.
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and is a reflection of the hyperplastic state of the epidermis, as
has been indicated for benzoyl peroxide (37). It is possible that
the activation of certain cellular processes could result in the
indirect activation of PKC. Fatty acids, including arachidonic
acid and its metabolites, have been shown to activate PKC (38,
39). By stimulating the production of such products, EPP could
indirectly cause some activation of PKC, thus accounting for
the 20% down-regulation.

A number of other reports indicate that the mechanism of
action of EPP is different from that of PMA. EPP does not
alter yolk sac morphology, as does PMA (40), it has no effect
on terminal differentiation in mouse keratinocytes (41), it does
not induce terminal differentiation in human keratinocytes (42),
and EPP-induced ODC activity is not inhibited by indometha-
cin or enhanced by prostaglandin E,, as is induction by PMA
(43). These reports, along with the data presented here, indicate
that EPP probably operates through a mechanism different
from PMA and may have a mechanism of action different from
other non-phorbol ester promoters such as palytoxin and tha-
psigargin.

The study presented here demonstrates the ability of EPP to
promote tumors in the initiated skin of SSIN mice and to cause
the morphological and biochemical processes that are necessary
for tumor promotion to occur, in a manner comparable to that
of PMA. The mechanism of action of EPP does not appear to
be through direct interaction with PKC, the cell receptor for
PMA. Further studies now in progress to examine more closely
the effects of EPP on PKC should provide a clearer understand-
ing of the mechanisms involved.
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