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larization; concomitant inhibition of the growth of a well-established
secondary implant could be augmented by surgically reducing its size
(3). However, induction of inflammatory cells in the vicinity of the
secondary implant can diminish or eliminate the inhibition of the
growth of the secondary implant (13).

The first experiment cited in the previous paragraph was made
possible by the fact that concomitant tumor resistance, in contrast to
the immunity produced by hydrocarbon-induced tumors, is relatively
non-tumor specific (3, 4, 6, 14). It is possible that what specificity
does exist is a specificity for some elements of organ- or tissue-type
rather than for individual tumors. Consequently, it was possible to use
two different tumors, with inherently different growth rates, together
in the same animal in order to demonstrate that concomitant tumor
resistance is not dependent upon the sequence of tumor transplanta-
tion.

Systemic Inhibition of Growth

Numerous lines of evidence, apart from concomitant tumor resis-
tance per se, suggest the existence, in sera, of nonimmune, tumor-
inhibiting ligands. Some of these data suggest that the inhibitory
ligands are a product of tumor cell metabolism while others suggest
that similar ligands may also be produced by normal tissues. Many of
the observations could have other explanations or interpretations, but,
collectively, they constitute a strong case for the existence of circu-
lating, nonimmune, growth inhibitors.

Ruggiero et al. (11), as already discussed, have demonstrated tu-
mor-produced nonimmunological “seric inhibitors” that cause tumor
cytostasis and have shown that the resistance is transferable by para-
biosis. Several authors have demonstrated, in experimental systems,
that the presence of a large growing tumor inhibits the development of
lung metastases (4, 6, 14-16). The sometimes explosive growth of
distant metastases, after excision of the primary tumor, has been
reported in both clinical and experimental contexts (12, 17); this
phenomenon may be, at least in many of the human cases, nonimmu-
nological inasmuch as the incidences of relatively few types of human
cancer are modified by immunodepression (18). Perhaps also suggest-
ing the existence of circulating tumor inhibitors is the observation that
most circulating tumor cells do not establish metastases but perish in
the blood stream (19).

Several observations suggest that systemic growth inhibition is not
a phenomenon confined to tumor systems but may be exhibited also
by normal tissues. It has been claimed that endocrine organ transplan-
tation is most successful when the corresponding host organ is either
removed or diminished (Halsted’s law) (20); however, when this
phenomenon is seen, it is probably the result an increase in trophic
hormones (21, 22). Regeneration of endocrine-dependent organs will,
under the stimulus of the appropriate hormones, replace the size of the
original organ; thereafter the organ will show no further growth de-
spite continued hormonal stimulation (23), suggesting a systemic in-
hibitor. Perhaps most persuasive is the observation that experimental
embryomas, produced by syngeneic embryo transplantation, usually
in contrast to the placenta-protected intrauterine fetus, show limited
growth (24-26) unless malignant transformation occurs (27, 28).
Compensatory hyperplasia in the liver (29-32) may be a further ex-
ample of systemic inhibition. The ultimate inhibition of growth, both
in regeneration and in ontogeny, is probably dependent upon a rising
titer of systemic inhibitors since the entire organ must receive signals
as to how much growth is appropriate (12). Although perhaps not
directly relevant to the phenomenon of concomitant tumor resistance,
it is worth noting that, in the compensatory hyperplasia of a normal
tissue such as the liver, lymphoid elements have been shown to play
a role as circulating growth regulators (33).

Local Facilitating Environment

The existence of local growth-facilitating influences is most dra-
matically shown by the effect of orthotopic tumor transplantation
(transplantation into the same tissue- or organ-type as that in which
the tumor had originated). Several authors, most notably Fidler et al.
(34-39), have shown that certain human tumors that ordinarily grow
poorly in the nude mouse may grow quite well if implanted orthoto-
pically. It has also been observed that a capsule, as is seen around a
smooth surfaced foreign body (40) or the tumor implantation site in
the s.c. tissues of the nude mouse (34) or the artificial capsule pro-
vided by a small s.c. placed test tube (41), can sometimes facilitate
tumor growth, perhaps by limiting the rate at which facilitating
ligands can diffuse away from the site of tumor implantation. A
possibly analogous phenomenon may be seen in the facilitation of the
growth of a single cell, in tissue culture, when placed in the confining
environment of a capillary tube (42). Facilitation of tumor growth can
also be accomplished by modifying the local site of tumor implanta-
tion by the concurrent implantation of conditioned medium (43),
fibroblasts (44), Matrigel (45, 46), or sponge (47); in some of these
cases, an inflaimmatory response might, in addition to supplying
growth-stimulating cytokines, limit the rate of diffusion. Conversely,
an absence of a local inflammatory response, as produced by the
phenomenon of counterirritation, augments the inhibition of the sec-
ondary tumor inoculum (13).

Further data, consistent with the idea of a local facilitating envi-
ronment, come from the observation that the success of tumor trans-
plantation is markedly, in most circumstances, correlated with the size
of the tumor inoculum; a large inoculum, in addition to possibly
providing a greater variety of genotypes for selection, may provide a
local environment more conducive to tumor growth (3, 48, 49).

Although other explanations are possible, taken together, these
varied observations are, at the least, consistent with the hypothesis of
the existence of tumor-facilitating ligands, produced by both normal
and by most tumor cells, that do not ordinarily enter the circulation in
significant quantities but which diffuse slowly through the extravas-
cular spaces and usually act locally. The exact nature of these ligands
must, at this point, remain a matter of speculation, but it is probable
that at least some may be already characterized growth factors. That
diffusion of facilitating ligands, away from the local site, actually
occurs is suggested by the importance, in some systems, of an appar-
ently confining environment and, in the case of tumor systems, the
importance of inoculum size; diffusion from the local site is a neces-
sary condition for the explanation of concomitant tumor resistance
that I am proposing.

Mechanism of Concomitant Tumor Resistance

If one grants the existence of circulating inhibitors and of slowly
diffusible, largely local, facilitating ligands, concomitant tumor resis-
tance becomes fully explicable. Whenever one of two tumors is large
and the other is small, the titer of the circulating inhibitor will be large,
because of its production by the large tumor, but the local titer of
facilitating factors within the small tumor will be low because of the
relatively high rate of loss, by diffusion, from the smaller tumor mass.
Within the larger tumor, in contrast, the titer of local facilitators will
be large because of the large number of cells producing them com-
bined with the relatively low rate of loss that occurs from a larger
mass; therefore, the smaller tumor will be inhibited at the same time
that the larger tumor will be relatively protected from the effects of the
circulating inhibitors and the larger may thus continue to grow. The
same mechanism may also help explain the probable fact that larger
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tumors may be, in general, more resistant to any tumor-inhibiting
agent, dietary, chemotherapeutic, radiological, or immunological, than
are smaller ones.

Although it is clear that concomitant tumor resistance has little
tumor specificity, it is not entirely nonspecific (3, 11). The facilitation
of tumor growth by orthotopic implantation may also lack complete
organ specificity (50). The complex nature of the specificity may be
illustrated by the “soil hypothesis” of metastasis distribution (51);
prostate cancer, for example, is markedly facilitated by orthotopic
transplantation (38) but metastasizes almost exclusively to bone (52).
Many other tumors show a marked predilection to metastasize to
particular organs (53). The existence of certain favorable “soils,” as
well as the confusing patterns of specificities among circulating in-
hibitors, may be determined by many different factors that may vary
from organ to organ and from tumor to tumor.

The specificities and cross-reactivities among various organs and
their derived tumors may often be determined by the varied specific-
ities of known or unknown stromal elements (52, 54), fibroblasts (55),
or of factors, such as ELAM 1 (56). Most recently it has been shown
that a-inhibin, of the transforming growth factor B family, is a se-
creted, circulating tumor suppressor protein with gonadal specificity
in the mouse (57). However, in the mouse mammary fat pad, the local
presence of normal mammary epithelium, but not of other epithelia,
promotes the growth of implanted malignant mammary tumors (58).

If not all tumors exhibit the phenomenon of concomitant tumor
resistance or exhibit it to differing degrees (3), the implication would
seem to be that tumors that fail to exhibit the phenomenon, or show
it in small degree, produce little of, and/or are insensitive to the action
of, either the circulating inhibitors or the local facilitators or both.
Concomitant tumor resistance, since it seems to be present in normal
tissues as well as in tumors, probably evolved as a mechanism to help
ensure that cells grow only in the appropriate organs and only to the
proper extent. It seems reasonable to postulate that tumors grow and
metastasize because they are less sensitive to this homeostatic mech-
anism than are normal tissues.

If life is sufficiently prolonged, there seems to be a significant
slowing of tumor growth, a phenomenon that has been extensively
documented (12, 59). The implication may be that, although most
tumors apparently produce both growth inhibitors and locally acting
growth facilitators, the titer of inhibitors within the tumor may usually,
as the size of the tumor increases, gradually outstrip the rise in the titer
of facilitators. One unusual, apparently nonimmunogenic, mouse tu-
mor has been described that may exhibit an opposite effect, a rela-
tively decreased production of inhibitors as tumor size increases;
growth of this tumor produces concomitant tumor resistance but loses
this property when the tumor reaches a rather large size (3). One
possible explanation could be that this tumor produces so much local
facilitator that, when the tumor becomes quite large, significant titers
appear systemically, thus providing protection to the smaller tumor
from the circulating inhibitors. All that would be necessary would be
for the production of facilitator and inhibitor to be uncoupled and for
this particular tumor to produce facilitator at a much higher rate than
it produces inhibitor. It could be that such a mechanism might be
operative in those rare instances in which metastases of human kidney
carcinomas have been observed to regress, rather than to be stimu-
lated, shortly after surgical removal of the primary lesion in the kidney
(60, 61).

If the seric inhibitors, as I propose, also inhibit the growth of normal
cells, a rising titer might, as some have suggested, contribute to the
cachexia that is sometimes observed in patients with advanced cancer
(62) (reviewed in Ref. 6); however, it must be noted that even large
tumors often fail to produce cachexia (11). The possibility that some
tumors may grow at a slower rate in older individuals (63-65) sug-

gests the speculation that the titer of circulating inhibitors may rise
with age; perhaps such a rise contributes to the debility that charac-
terizes old age. I have previously suggested (12) that a rising titer of
inhibitors, with the passage of time in young individuals, might ac-
count for the relative benign nature of neonatal tumors and the fre-
quency of spontaneous regression among tumors of early childhood
(66). Alternatively, the high incidence of neoplastic disease in old age
may suggest that the circulating inhibitors, of the concomitant tumor
resistance mechanism, become deficient in advanced age. I tend to
favor the notion that neoplasia usually begins as an aberrant compen-
satory hyperplasia (67) and that one noxious element, contributing to
the injury that results in compensatory growth, may be a rising level,
with age, of seric inhibitors. Which among these speculations, if any,
actually approaches reality is a question that only more work and
ingenuity will answer.
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