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fragment (Fig. 10B, lanes 3-5, 8, and 9). Interestingly, each of these
agents prevented etoposide-induced internucleosomal DNA fragmen
tation (Fig. KM, lanes 3-5, 8, and 9) and the morphological changes

of apoptosis as well (Fig. IOC). Similar results were obtained in
HL-60 cells and rat thymocytes after -y-irradiation (data not shown).

Despite these effects, these compounds did not prevent etoposide- or
irradiation-induced cell death. On the contrary, cells treated with

iodoacetamide or TLCK (in the presence or absence of etoposide)
uniformly excluded trypan blue for 2-3 h and then became permeable

to this dye. After 6 h of treatment, all of the cells treated with
iodoacetamide and up to 80% of the cells treated with TLCK were
permeable to trypan blue. Thus, agents such as TLCK and iodoace
tamide prevented the biochemical and morphological changes of ap
optosis but did not prevent cell death.

DISCUSSION

In this present study, we have shown that proteolysis of pADPRp to
an M, â€”¿�85,000fragment displaying DNA-independent enzyme activ

ity is an early event that accompanies apoptosis induced by a variety
of chemotherapeutic agents. The location of the proteolytic site on the
pADPRp molecule and the biological significance of this observation
are discussed below.

Cleavage of pADPRp. When HL-60 cells were treated with eto
poside, the polypeptide recognized by monoclonal antibody C-2-10
(Fig. 2C) showed a shift in mobility from M, 116,000 to -85,000.

Although the activation of transglutaminase has been observed in
other cells undergoing apoptosis (reviewed in Ref. 81), the increased
mobility of pADPRp was not due to the formation of intramolecular
Â¡sopeptide bonds. Blotting with an antiserum directed against the
second zinc finger of pADPRp revealed that the epitopes recognized
by this serum were recovered in a second fragment of Mr â€”¿�25,000

(Fig. 2D). This result strongly suggests that proteolytic cleavage of
pADPRp rather than the formation of intramolecular isopeptide bonds
occurs during apoptosis.

This apoptosis-associated proteolytic cleavage of pADPRp is

readily distinguished from the fragmentation of pADPRp that occurs
during the course of normal protein turnover. During normal turn
over, pADPRp is cleaved toward its carboxyl terminus to yield an
enzymatically inactive M, 80,000 fragment containing the DNA-
binding and automodification domains (82). In contrast, apoptosis-
associated cleavage of pADPRp removes the amino-terminal domain
to yield an M, â€”¿�85,000fragment that retains basal catalytic activity
but lacks the DNA-binding domain and cannot be stimulated by

nicked DNA (Fig. 3).
The identity of the protease that is responsible for the cleavage of

pADPRp is currently unknown. Bruno et al. (83) reported that chlo-

romethyl ketones inhibited DNA fragmentation in a number of exper
imental systems in which apoptosis was induced. Our experiments
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Fig. 9. Cleavage of pADPRp in rat thymocytes. Nonirradiated (lanes 1-12) or irradi
ated (lanes Â¡3-lti) thymocytes were incubated in the absence (lanes 1-7 and 13-18) or
presence (lanes 8-12) of 1 /Â¿Mdexamethasone for the indicated time and then prepared for
Western blotting with antibody C-2-10. Under the conditions of this assay, >95% of the

untreated and treated cells excluded trypan blue during the first 8 h.

23-

Fig. 10. Effect of protease inhibitors on DNA degradation (A), cleavage of pADPRp
(B), and cell morphology (C). In A and B, after a 1-h treatment with 6K |XMetoposide.
HL-60 cells were incubated for 3 h in the absence of protease inhibitors (lane 2) or in the
presence of 10 mM iodoacetamide (lAAmide. lane .Ã•).10 rmi yV-ethylmaleimide (NEM,
lane V), 1 mM /i-chloromercuribenzenesulfonate (pCMBS. lane 5). 1 mM phenylmethyl-
sulfonyl fluoride (PMSF, lane 6). 1 mvi TLCK (lane cV),0.2 HIMtosyl-i.-phenylalanine
chloromethyl ketone (TPCK, lane 9), 2 /xg/ml phosphoramidone (phosphor, lane 10), or
5 fig/ml anlipain (lane II). Untreated cells were examined in lanes 1 and 7. C, Cell
morphology as determined by phase contrast (left) and fluorescence microscopy (righi)
after staining with bisbenzimide. 1,1', control HL-60 cells. 2,2', cells incubated for l h
with 68 ^iMetoposide followed by 5 h in fresh medium lacking protease inhibitors. 3,3',

cells incubated for l h with 68 JXMetoposide followed by 5 h in fresh medium containing
0.5 mM TLCK.

confirm and extend those observations. The studies presented in Fig.
10 suggest that pADPRp cleavage in HL-60 cells can be inhibited by
irreversible sulfhydryl-blocking reagents as well as chloromethyl ke
tones but not by serine esterase inhibitors. The sulfhydryl-dependent
cathepsins are inhibited by this spectrum of inhibitors (84â€”86).Inter
estingly, this class of proteases is also inhibited by Zn2+ (86, 87), a

cation that has been observed to prevent apoptosis in a variety of
settings (88-90).'' Although these observations are all consistent with

the view that the protease involved in pADPRp cleavage might be a
sulfhydryl-dependent cathepsin, a number of additional considerations

'' Subsequent experiments have revealed that cleavage of pADPRp in etoposide-trealed
HL-60 cells is also prevented by treatment of the cells with 1 mM ZnCl, (S. H. Kaufmann,

unpublished observations).
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argue against this conclusion. Intracytoplasmic release of a sulfhydr-
yl-dependent cathepsin would be expected to cause degradation of

many cellular polypeptides (85, 91). The observation that most cell
ular polypeptides remain intact during apoptosis (Fig. 2, B and E)
appears to argue against the widespread accessibility of cathepsins B,
H, or L to intracellular polypeptides. Likewise, the inability of leu-
peptin or E-64, two other inhibitors of sulfhydryl-dependent cathep
sins (84-86, 91), to inhibit pADPRp cleavage also argues against the
possibility that the enzyme involved is a sulfhydryl-dependent cathep

sin, although the inability of these inhibitors to penetrate into cells in
a timely fashion might also explain these results. Further studies are
therefore required to identify the protease(s) involved in pADPRp
cleavage.

Biological Consequences of pADPRp Cleavage. Previous results
from a number of laboratories have shown that the internucleosomal
degradation of DNA in cells undergoing apoptosis is accompanied by
depletion of cellular NAD stores (see "Introduction"). This NAD

depletion has been attributed to the consumption of NAD by pAD-

PRp, which is in turn thought to be activated by internucleosomal
DNA breaks that appear during apoptosis. On the other hand, direct
measurement of enzyme activity suggested a decrease in pADPRp
activity in thymocytes undergoing irradiation-induced apoptosis (52).

These results have been difficult to reconcile with each other.
The simultaneous monitoring of NAD levels and pADPRp cleavage

described in Fig. 4 suggests that both of the previous interpretations
are correct. When 3-AB was applied to HL-60 cells at a concentration
that selectively inhibits pADPRp (56), the etoposide-induced decline
in NAD levels was delayed (Fig. 4C, lanes 7-12). This result (see also

Refs. 30, 31, and 51) directly implicates pADPRp in the consumption
of NAD that ordinarily occurs early during the course of apoptosis
(Fig. 4C, lanes 1-4). Furthermore, when cells were incubated in the
absence of 3-AB, NAD levels began to decline prior to the earliest
detectable cleavage of pADPRp (Fig. 4, B and C, lanes l^t). This

observation suggests that the intact pADPRp molecule rather than the
MT ~85,000 fragment is responsible for the initial consumption of

NAD. By the time that nucleosomal DNA fragments appear, however,
levels of the M, 116,000 polymerase are diminishing and the M,
â€”¿�85,000fragment is being formed (Fig. 4, lanes 4-6). Although this
M, â€”¿�85,000fragment might play a role in the continuing consumption

of NAD late in the course of apoptosis (Fig. 4C, lanes 5 and 6), the
fragment appears to have much lower catalytic activity in the presence
of nicked DNA than does the intact polymerase (Fig. 35). The for
mation of this less active fragment (see also Fig. 9, lanes 15-18)

appears to provide an explanation for the decreasing pADPRp cata
lytic activity that has been previously reported during radiation-in

duced apoptosis (46, 52).
Although it is tempting to speculate that the proteolytic cleavage of

pADPRp serves a feedback function by decreasing the activity of
pADPRp after it has been stimulated by DNA strand breaks, the data
do not appear to support this model. In particular, treatment with 3-AB

delays NAD consumption (presumably by inhibiting pADPRp) but
does not delay DNA fragmentation and pADPRp cleavage in the
etoposide-treated HL-60 cells (Fig. 4, lanes 10-12). This result sug

gests that activation of pADPRp activity is not required for proteolytic
cleavage of pADPRp. If the downregulation can occur without the
preceding upregulation, it is difficult to view this as a feedback mech
anism. Instead, the cleavage of pADPRp appears to represent one of
several proteolytic events that commonly occur during apoptosis (see
below).

Implications for Programmed Cell Death. Studies in a number
of laboratories are directed at elucidating the common features of
physiological cell death (see "Introduction"). Because of its almost

ubiquitous activation during apoptosis (reviewed in Refs. 5, 26, and

27), much current effort is focused on the identification and charac
terization of the "apoptotic endonuclease." Other frequently observed

features of the apoptotic process such as the induction of the TRPM-2
gene (92) or the requirement for new protein synthesis (70-74) have
been shown to be absent from certain cell types [absence of TRPM-2

induction (14, 93); apparent absence of requirement for protein syn
thesis (58, 75-79)]. On the other hand, the proteolytic process de

scribed in the present work appears to be widespread.
There is ample precedent for the suggestion that proteases might

play a role in apoptosis. Experimental results in the 1960s and 1970s
revealed that cathepsin activity increased in tissues undergoing apo
ptosis (94, 95). Increased protein turnover rates were subsequently
demonstrated in isolated thymocytes undergoing apoptosis (96). More
recent results suggested that quantitatively abundant nuclear proteins
such as pADPRp (58, 59) and lamin B (58, 59, 97) were proteolyti-

cally cleaved during apoptosis in the limited number of experimental
systems examined. The present results extend these earlier studies by
demonstrating that specific cleavage of the M, 116,000 pADPRp
polypeptide to an M, â€”¿�85,000fragment accompanies endonucleolytic

DNA degradation in a variety of model systems and appears to be a
hallmark of chemotherapy-induced apoptosis.

Since treatments that inhibit this proteolytic cleavage also inhibit
the internucleosomal DNA degradation (Fig. 10/4; see also Ref. 83)
and the morphological changes associated with physiological cell
death (Fig. IOC), the possibility that limited proteolysis is an impor
tant controlling factor in initiating apoptosis needs to be considered. In
this context, the recent suggestion that the apoptotic endonuclease is
a preexisting cellular enzyme which decreases in molecular mass as
cells undergo apoptosis (34) raises the interesting possibility that a
proteolytic process similar to the one described in the present paper
plays a role in activating the apoptotic endonuclease. Further studies
are required to assess this possibility.
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