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Identification of NAT1 and NAT2 Isozymes. Partial purification
of colon cytosol by anion exchange chromatography resulted in the
separation and identification of two different acetyltransferase
isozymes, one which eluted at fraction 7 (60 mm KCl) and the other
at fraction 11 (150 mm KCl). As shown in Fig. 2, the isozyme eluting
at fraction 7 exhibited acetylator genotype-dependent (polymorphic)
expression with highest levels in homozygous rapid acetylators, in-
termediate levels in heterozygous acetylators, and lowest levels in
homozygous slow acetylators. Based on its genetic regulation, chro-
matographic properties, and substrate specificity, this isozyme was
identified as polymorphic acetyltransferase or NAT2. The second
isozyme, eluting at fraction 11, expressed equivalent levels of ary-
lamine N-acetyltransferase activity in the three acetylator genotypes
(Fig. 2). Based on its genetic regulation, chromatographic properties,
and substrate specificity this isozyme was identified as monomorphic
acetyltransferase or NAT1.

N-Acetylation of Arylamines by Colon NAT1 and NAT2. The
NAT1 and NAT2 isozymes expressed in hamster colon were tested for
their capacity to N-acetylate a number of arylamine chemicals (Table
1). Levels of N-acetyltransferase activity catalyzed by NAT1 were
highest for 4-aminophenol and much lower for 2-aminofluorene,

Table | N-Acetylation catalyzed by NAT] and NAT2 expressed in congenic

Syrian hamster colon cytosol®
N Acetyltransferase activity
(nmol/min/m, in)
Acetylator § prote NAT2/NAT1
Substrate genotype? NAT1 NAT2 ratio
4-Aminophenol r 18.1+£2.6 34837 1.92
rs 13.1+1.8 170+ 1.7 1.30
s 12519 1.78 £ 0.67 0.14
(P < 0.0001)
2-Aminofluorene rr 1.39£0.19 24832 17.8
rs 097 £0.19 11.7+1.6 12.1
s 0.96 + 0.26 0.74 £ 0.29 0.77
(P < 0.0001)
4-Aminobiphenyl rr 1.44 £ 031 18.7+3.8 13.0
rs 091 £0.27 7.43+1.20 8.16
s 1.10+0.33 0.64 £ 0.17 0.58
(P=0.0011)
3,2’-Dimethyl-4- r 1.06 + 0.41 2.98 £ 0.36 2.81
aminobiphenyl rs 0.68+0.18 1.31£0.15 1.93
s 1.00 £ 0.35 0.50+0.16 0.50
(P = 0.0002)
Glu-P-2 r 0.70+0.14 1.57+0.23 224
rs 0.90 +0.32 1.13+£0.25 1.26
s 0.65+0.13 0.66 + 0.16 1.02
(P = 0.0463)
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Fig. 2. Separation of NAT1 and NAT2 acetyltransferase isozymes in Syrian hamster
colon cytosol. Colon cytosols from Bio. 82.73/H-Pat” acetylator (O), Bio. 82.73/H-Par’/
Pat* acetylator (A) and Bio. 82.73/H-Pat* acetylator ((J) congenic hamsters were sub-
jected to anion exchange chromatography as described in “Materials and Methods.”
Arylamine N-acetyltransferase activity toward 2-aminofluorene (fop), 4-aminobiphenyl
(middle), and 3,2-dimethyl-4-aminobiphenyl (bottom) in nmol/min/ml/mg cytosol applied
to the column are plotted on the ordinate versus fraction elution number on the abscissa.
The acetylator genotype-dependent isozyme (NAT?2) eluted at fraction 7 (60 mm KCI). The
acetylator genotype-independent isozyme (NAT1) eluted at fraction 11 (150 mm).
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@ Values represent mean + SEM for four individual determinations of NAT1 and NAT2
partially purified from two hamster colon cytosols of each acetylator genotype. NAT2
values differed significantly with respect to acetylator genotype and significance values
are indicated. NAT1 values did not differ significantly (P > 0.05) with respect to acetylator
genotype for any substrate. Protein concentrations ranged from 0.3 to 0.5 mg/ml in each
3550)'

® rr, homozygous rapid acetylator genotype; rs, heterozygous acetylator genotype; ss,
homozygous slow acetylator genotype.

4-aminobiphenyl, 3,2-dimethyl-4-aminobiphenyl, and Glu-P-2. Re-
gardless of substrate, the arylamine N-acetylation rates catalyzed by
NAT1 were independent of acetylator genotype (Table 1). In contrast,
rates of arylamine N-acetylation catalyzed by NAT2 varied with sub-
strate in the order: 4-aminophenol > 2-aminofluorene > 4-aminobi-
phenyl > 3,2-dimethyl-4-aminobiphenyl > Glu-P-2. For each ary-
lamine substrate, the levels of N-acetylation catalyzed by NAT2
clearly reflected acetylator genotype (Table 1). NAT2/NAT1 meta-
bolic ratios were consistently >1 but were affected substantially by
the acetylator genotype for 2-aminofluorene and 4-aminobiphenyl and
to a lesser extent for the other arylamine substrates (Table 1).

Metabolic Activation by Colon NAT1 and NAT2. NAT1 and
NAT?2 isolated from colon cytosol of rapid, intermediate, and slow
acetylator congenic hamsters were tested for their capacity to meta-
bolically activate N-hydroxy-2-aminofluorene and N-hydroxy-2-
acetylaminofluorene to DNA adducts. NAT1 catalyzed the N,O-acety-
lation of N-hydroxy-2-acetylaminofluorene at rates 2-12-fold higher
than the O-acetylation of N-hydroxy-2-aminofluorene (Table 2). The
activation rates for both compounds were independent of acetylator
genotype when catalyzed by NAT1 (Table 2). In contrast, NAT2
catalyzed the metabolic activation of N-hydroxy-2-aminofluorene
(O-acetylation) at rates that did reflect acetylator genotype (Table 2).
Although NAT?2 catalyzed intramolecular N, O-acetyltransfer of N-hy-
droxy-2-acetylaminofluorene, rates for this reaction were about 5-fold
lower in the homozygous rapid acetylator and did not reflect acety-
lator genotype (Table 2). Consequently, the NAT2/NAT1 activity ratio
varied substantially with respect to acetylator genotype for the O-
acetylation of N-hydroxy-2-aminofluorene, whereas acetylator geno-
type had no effect on the NAT2/NAT1 metabolic activation ratio for
N-hydroxy-2-acetylaminofluorene (Table 2).

Effect of Paraoxon on NAT1- and NAT2-catalyzed Metabolic
Activation. The capacity of NAT1 and NAT?2 to catalyze the meta-
bolic activation of N-hydroxy-2-aminofluorene and N-hydroxy-

Downloaded from cancerres.aacrjournals.org on January 20, 2021. © 1993 American Association for Cancer
Research.


http://cancerres.aacrjournals.org/

N- AND O-ACETYLATION OF ARYLAMINES BY COLON NAT!I AND NAT2

Table 2 Metabolic activation of N-hydroxy-2-aminofluorene and N-hydroxy-
2-acetylaminofluorene by NATI and NAT2 expressed in congenic
Syrian hamster colon cytosol®

Acetyltransferase activity
(pmol/min/mg DNA/mg protein)

Acetylator NAT2/NAT1
Substrate/reaction  genotype ® NATI NAT2 ratio
N-Hydroxy-2- m 33+18 92.1+143 279
aminofluorene rs 6.2+3.8 306+ 124 4.93
O-acetyltransferase s 103+85 Nondetectable
N-Hydroxy-2-acetyl- r 38.0+ 109 20.5+5.1 0.54
aminofluorene rs 28.8+9.6 152142 0.53
N,O-acetyltransferase s§ 202+8.2 152+4.1 0.75

@ Values represent mean + SEM for four individual determinations of NAT1 and NAT2
partially purified from two hamster colon cytosols of each acetylator genotype. NAT2
values differed significantly with respect to acetylator genotype for the metabolic activa-
tion of N-hydroxy-2-aminofluorene (P = 0.0007) but not for the metabolic activation of
N-hydroxy-2-acetylaminofluorene (P > 0.05). NAT1 values did not differ significantly
(P > 0.05) with respect to acetylator genotype for any substrate or reaction.

® rr, homozygous rapid acetylator genotype; rs, heterozygous acetylator genotype; ss,
homozygous slow acetylator genotype.

Table 3 Effect of paraoxon on NATI- and NAT2-catalyzed metabolic activation of
N-hydroxy-2-aminofiuorene and N-hydroxy-2-acetylaminofluorene

N-Hydroxy-2-
Colon Paraoxon N-Hydroxy-2-aminofluorene acetylaminofluorene
isozyme (M) O-acetyltransferase N,O-acetyltransferase
NATI 0 36+ 147 74322
NATI 100 4604 67.8 £0.4°
NAT2 0 54623 52316
NAT2 100 50.7+ 1.6 45.7 + 0.4°

“ Mean + SEM in pmol/min/mg DNA/mg protein.
b Metabolic activation reduced significantly (P < 0.05) in the presence of 100 pm

paraoxon.

2-acetylaminofluorene to DNA adducts was tested for sensitivity to
100 pm paraoxon, an inhibitor of microsomal deacetylases. The O-
acetylation of N-hydroxy-2-aminofluorene was resistant to 100 pm
paraoxon when catalyzed by either NAT1 or NAT2 (Table 3).
The metabolic activation of N-hydroxy-2-acetylaminofluorene was
slightly but significantly reduced by 100 um paraoxon when catalyzed
by either NAT1 or NAT2 (Table 3).

Michaelis-Menten Kinetic Constants for the N-Acetylation of
Arylamines by’ NAT1 and NAT2. Michaelis-Menten kinetic con-
stants were determined for the N-acetylation of a number of arylamine
and heterocyclic arylamine carcinogens by NAT1 and NAT2 derived
from homozygous rapid acetylator hamster colon cytosol (Table 4).
Apparent K, values for the carcinogenic arylamines ranged from 18
to 56 pMm for NAT1 and from 155 to 526 um for NAT2. Interestingly,
the heterocyclic arylamine Glu-P-2 had the highest apparent K, for
NAT1 and the lowest apparent K,,, for NAT2 (Table 4). Apparent V .,
values for the carcinogenic arylamines ranged 1-4 nmol/min/mg for
NAT1. The NAT2 apparent V,,, values were much higher for the
N-acetylation of 2-aminofluorene, 4-aminobiphenyl, and B-naphthyl-
amine, followed by 3,2’-dimethyl-4-aminobiphenyl and Glu-P-2

(Table 4). Calculation of NAT2/NAT1 clearances yielded ratios rang-
ing between 0.27 and 0.56 for each of the arylamine carcinogens
(Table 4).

DISCUSSION

The separation and identification of NAT2 and NAT1 were made
initially in hepatic cytosols of rapid and slow acetylator inbred Syrian
hamster strains (30). In subsequent experiments (24), the polymorphic
and the monomorphic acetyltransferase expressed in hepatic cytosol
were shown to catalyze the metabolic activation of N-hydroxyary-
lamine carcinogens to DNA adducts by O-acetylation. Both the poly-
morphic and monomorphic acetyltransferase isozymes in Syrian ham-
ster hepatic cytosol have been purified (27, 31, 32) and shown to
catalyze the N-acetylation of a diversity of arylamines and the O-
acetylation of N-hydroxyarylamine proximate carcinogens. However,
metabolic activation of N-hydroxy-N-acetylarylamines via N,O-
acetyltransfer in hamster liver cytosol was selective for the monomor-
phic acetyltransferase (27, 31).

Human epidemiological studies show a genetic predisposition to
urinary bladder cancer in slow acetylators and to colorectal cancer in
rapid acetylators, which suggests an important role for NAT2 within
the local target organ (3). Evidence for polymorphic expressions of
N-acetyltransferase activities has been reported in human urinary
bladder (33-34) and colon (35) cytosols. Similarly, convincing evi-
dence for acetylator genotype-dependent N-acetylation of arylamine
carcinogens has been shown in hamster colon (Fig. 1) and urinary
bladder cytosol (22, 23, 36). Both NAT1 and NAT2 were expressed in
hamster colon cytosol (Fig. 2). This finding is consistent with previous
studies that identified the polymorphic and monomorphic acetyltrans-
ferase isozyme in hamster urinary bladder cytosols (37) and two
acetyltransferase isozymes in hamster intestine cytosol (38). Recent
preliminary studies reported two acetyltransferase isozymes in eight
hamster tissue cytosols, including the colon (39).

However, the relative expression of NAT1 and NAT2 in extrahe-
patic tissues such as colon may differ from that in liver. For example,
Turesky et al. (40) reported a polymorphic expression in the metabolic
activation of N-hydroxyarylamines via O-acetylation in eight human
liver cytosols but could not readily discern the same polymorphic
expression in human colon cytosols from the same eight individuals.
Similarly, Kirlin et al. (35) required statistical transformations of the
raw data in order to discern rapid and slow acetylators of human colon
N-acetyltransferase activities.

Prior studies suggest a significant tissue-selective expression of
p-aminobenzoic acid (a selective substrate for NAT1) and sulfameth-
azine (a selective substrate for NAT2) N-acetyltransferase activities in
the rapid and slow acetylator rabbit model (41, 42). In rapid acetylator
rabbits, sulfamethazine N-acetyltransferase activity (NAT2) was ex-
pressed at much higher levels in liver and small intestine than in large
intestine, whereas p-aminobenzoic acid N-acetyltransferase activity
(NAT1) appeared to be uniformly expressed along the intestinal tract.

Table 4 Michaelis-M. kinetic ¢ for N-acetyl of aryl by h colon NAT! and NAT2¢
Apparent K,® Apparent V., ¢ Apparent clearance
) (nmol/min/mg) (VenaxKm)
Arylamine (o e o NAT2/NATI
substrate NAT1 NAT2 NAT1 NAT2 NAT1 NAT2 clearance ratio

2-Aminofluorene 183%1.5 311+ 14 299+ 041 28.7+39 0.16 0.09 0.56
4-Aminobiphenyl 256144 526+ 19 3.75+0.83 235+3.1 0.1 0.04 0.27
B-Naphthylamine 182+1.7 392+27 2.67+044 202+3.0 0.15 0.05 0.33
3,2'-Dimethyl-4-aminobiphenyl 29.1 £ 6.1 192+ 19 2.66 + 0.54 4.85 £ 0.65 0.09 0.03 0.33
Glu-P-2 55.7x14.8 155+ 10 1.36 + 0.24 1.56 £ 0.25 0.02 0.01 0.50

@ Values represent mean + SEM for four or five individual determinations with NAT1 and NAT2 partially purified from Bio. 82.73/H-Par" congenic hamster colon cytosol. Protein

concentrations ranged from 0.3 to 0.5 mg/ml in each assay.

b Apparent K., values for each substrate are significantly lower (P < 0.001) for NAT1 than for NAT2. € Apparent V yq, values for 2-aminofluorene (P = 0.0063), 4-aminobiphenyl
(P = 0.0086), and B-naphthylamine (P = 0.0106) are significantly higher for NAT2 than for NAT1.
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In congenic Syrian hamsters, NAT2 apparent maximum velocities in
colon cytosol of rapid acetylators were uniformly higher than NAT1
for the N-acetylation of each of the arylamine carcinogens tested
(Table 4). Rapid acetylator NAT2/NAT 1 activity ratios were 18 and 13
for the N-acetylation of 2-aminofluorene and 4-aminobiphenyl, re-
spectively (Table 1), and 28 for the O-acetylation of N-hydroxy-2-
aminofluorene (Table 2) in hamster colon cytosol. These NAT2/NAT 1
activity ratios are analogous to values previously reported in hamster
liver cytosol toward these same substrates (24, 43). Whether or not
human colon expresses relatively high NAT2/NAT1 activity ratios for
the metabolic activation of N-hydroxyarylamines has yet to be con-
clusively demonstrated, but studies in our laboratory and elsewhere
relative to this question are in progress.

The expression of high levels of NAT1 and NAT?2 in colon cytosol
with the capacity to O-acetylate N-hydroxyarylamine proximate car-
cinogens has implications to epidemiological studies that suggest a
predisposition to colorectal cancer in human rapid acetylators (17, 18).
A predisposition of rapid acetylators to colorectal cancer could be
attributable to acetylator genotype-dependent expression of NAT2 in
colon cytosol that catalyzes the metabolic activation of N-hydroxy-
arylamine proximate carcinogens following hepatic oxidation by
P4501A2 (44, 45). The present findings in hamster support the
hypothesis and suggest a high capacity for NAT2-catalyzed O-acety-
lation of N-hydroxyarylamine carcinogens in colon cytosol. Further
support for this hypothesis derives from previous studies showing

polymorphic expression of N-hydroxyarylamine O-acetyltransferase,

in human liver (34, 40, 46) and urinary bladder (33, 34) cytosols.
Recently, human recombinant NAT1 and NAT2 expressed in bacterial
and mammalian systems were shown to catalyze the metabolic acti-
vation (O-acetylation) of N-hydroxyarylamine proximate carcinogens
(19, 20). In hamster liver (24, 27) and colon (Table 3), both NAT1-
and NAT2-catalyzed metabolic activations of N-hydroxyarylamines
but not N-hydroxy-N-acetylarylamines were resistant to 100 pm
paraoxon, indicating that the metabolic activation of N-hydroxy-
arylamines occurs via direct cytosolic acetyltransferase-catalyzed
O-acetylation rather than by sequential N-acetylation followed by
microsomal esterase-catalyzed, paraoxon-sensitive deacylation of
N-hydroxy-N-acetylarylamines that also yields DNA adducts (24, 34,
47, 48). Similar results have been reported for the metabolic activation
of N-hydroxyarylamines by human recombinant NAT1 and NAT2
(19). The very limited paraoxon sensitivity toward the metabolic
activation of N-hydroxy-2-acetylaminofluorene suggests a very lim-
ited contribution by microsomal esterases.

Polymorphic expressions of N-hydroxyarylamine O-acetyltrans-
ferase activity in human autopsy or biopsy samples (33, 34, 40, 46) do
not prove local metabolic activation by NAT2 in extrahepatic tumor
target sites such as colon. Previous studies have shown acetylator
genotype-dependent N-acetylation of arylamines in colon cytosols of
rapid and slow acetylator inbred hamster (28) and rat (49) strains. In
addition, N-hydroxy-2-aminofluorene O-acetyltransferase was higher
in colon cytosols of rapid acetylator hamsters than in those of slow
acetylators (28). Although inbred hamster and rat strains should elim-
inate genetic variability within a strain, inbred strains nevertheless do
differ from each other in many other genes in addition to the poly-
morphic acetyltransferase locus (NA72). Thus, we undertook the con-
struction of rapid and slow acetylator congenic Syrian hamster lines
that are genetically identical except for the NAT2 gene and other
closely linked loci (21-23). Acetylator genotype-dependent expres-
sion of arylamine N-acetyltransferase has been shown (Fig. 1) in colon
cytosols from these congenic lines. Furthermore, both the NAT1 and
NAT?2 isozymes have been identified in congenic hamster colon cy-
tosols with the capacity to catalyze the metabolic activation of N-
hydroxyarylamine proximate carcinogens. The acetylator genotype-
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dependent O-acetylation of N-hydroxyarylamines by NAT2 expressed
in congenic hamster colon cytosols is strong evidence for local met-
abolic activation of N-hydroxyarylamine proximate carcinogens reg-
ulated by the NAT2 gene locus.

The apparent maximum velocities for NAT 1-catalyzed N-acetyla-
tion of 2-aminofluorene and 4-aminobiphenyl in hamster colon cyto-
sol were about 6-fold lower than the same activities in noncongenic
rapid acetylator hamster liver cytosol, whereas apparent maximum
velocities for NAT2-catalyzed N-acetylation in hamster colon were
about 12-fold lower than those of liver (43). As previously shown in
liver (43) and urinary bladder (37) cytosols of noncongenic Syrian
hamsters, the apparent affinities of arylamines for NAT1 were greater
than for NAT2, which is opposite to that observed with the human
recombinant NAT1 and NAT2 isozymes (50). The kinetic constants
suggest that NAT2 is a low affinity but high capacity enzyme in
hamsters with substantial variation between different arylamine sub-
strates. In contrast, hamster NAT1 appears to be a high affinity but
limited capacity enzyme for either the N-acetylation of arylamine or
O-acetylation of N-hydroxyarylamine carcinogens.

Hamsters and humans are analogous to the extent that both activate
N-hydroxyarylamine proximate carcinogens to DNA adducts via
direct O-acetylation catalyzed by genetically polymorphic NAT2
(19, 20, 50). The compelling evidence for acetylator genotype-depen-
dent, NAT2-catalyzed metabolic activation of N-hydroxyarylamine
proximate carcinogens in congenic hamster colon cytosol provides
strong mechanistic support for a predisposition of human rapid acety-
lators to colorectal cancer. The relative roles of NAT1 versus NAT2 in
the metabolic activation of N-hydroxyarylamines in human colon have
yet to be defined, but studies of this type are warranted in light of the
present findings in the rapid and slow acetylator congenic hamster
model.
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