






COLON TUMOR PROMOTION BY PHITC

Table 1 Effect of dietary PHITC on AOM-induced colon adenocarcinoma incidence in
male h'344 rats

Tumor incidence (% of animals wilh adenoea reinomas)

groupAOM-treatedControl

diet
320 ppm PHITC
640 ppmPHITCSaline-treatedControl

diet640
ppm PHITCanimals36

35
361212Invasive38

40 (5)''

58(53)00Noninvasivc67
71(6)
75(12)00Total"81

85 (5)
94(16)00Invasive16

16(0)
20(25)00Total81

86(6)
97'(20)00

" Total includes invasive plus noninvasive adenocarcinomas.
'' Values in parentheses are percentile increases in adenocarcinoma incidence com

pared to their respective control groups.
' Significantly different from control group hy x~ lest (Z-prohahility): P < 0.05.

RESULTS

General Observations. The body weights of animals treated with
AOM and fed the control and experimental diets were comparable
throughout the study (P > 0.05: data not shown). In vehicle-treated

groups, however, dietary PHITC at 640 ppm decreased the body
weight slightly but significantly (P <0.05) compared to weights of the
animals on control diet only. In vehicle-treated animals, 640 ppm

PHITC did not produce any gross or histopathological changes in
liver, kidney, or lungs. However, this high dose of PHITC induced
some bleeding in the cecum and intestine in about 30% of the animals.

Tumor Incidence. The effects of dietary PHITC on AOM-induced

colon and small intestinal tumor incidence are summarized in Table 1.
There was no evidence of tumors in vehicle-treated animals. AOM-

induced adenocarcinomas of the colon in about 81% of animals fed
the control diet; 38% of these animals had invasive and 67% had
noninvasive adenocarcinomas. Feeding of 320 ppm PHITC had no
significant effect on the incidence of invasive, noninvasive, and total
(invasive and noninvasive) adenocarcinomas of the colon. Adminis
tration of 640 ppm of PHITC in the diet increased the incidences of
invasive (53%), noninvasive (12%), and total adenocarcinomas (16%)
of the colon. The incidence of total intestinal (colon plus small
intestine) adenocarcinomas was significantly (P < 0.03) increased in
animals fed 640 ppm PHITC in the diet by comparison to the control
diet group.

Table 2 summarizes the results on multiplicity of tumors of the
colon and small intestine. Interestingly, administration of 320 or 640
ppm PHITC in the diet significantly (P < 0.05 to 0.01) increased the
multiplicities of colon adenocarcinomas in terms of tumors/animal
and also tumors/tumor-bearing animal in a dose-dependent manner.

Compared to the control diet, adding 640 ppm PHITC significantly

(P < 0.01) increased the number of total intestinal adenocarcinomas
per animal.

Data summarized in Table 3 and Fig. 3 demonstrate that the volume
of colon tumors was significantly larger (1.93- to 4.3-fold) in animals

receiving dietary doses of either 320 or 640 ppm PHITC. Four animals
in the higher-dose group and two animals among those getting 320

ppm PHITC had large prolapsing colon tumors 38 weeks after AOM
treatment (Fig. 3a). Also, 30% of the animals in the high-dose PHITC

group showed large tumors of the cecum with associated bleeding
(Fig. 3c). It is noteworthy that colon tumors of more than 1 cm in
diameter were found far more frequently in animals administered 640
ppm PHITC than in those fed the control diet.

Biochemical Studies. The activities of PLA2 and PI-PLC and

PGE2 levels in colonie mucosa and tumors are summarized in Table
4. Carcinogen administration significantly elevated the activities of
PLA2 and PI-PLC in the colonie mucosa in both control and PHITC
groups. Also, there was a 3- to 4-fold increase in the activities of
PLA-, and PI-PLC in colon tumors compared to the activities in the

surrounding colonie mucosa. Interestingly, animals fed PHITC
showed significantly (P < 0.05 to 0.0001) increased PLA2 activity in
the colonie mucosa and in the tumors. However, administration of
PHITC had no significant effect on PI-PLC activity in either mucosa

or tumors of the colon. AOM treatment also caused an increase in
PGE-, levels in the mucosa of the animals as compared to their
vehicle-treated counterparts. However, PGE2 levels were markedly

higher in colon tumors than in mucosa. Administration of PHITC
significantly elevated the PGE, in the colonie tumors and mucosa of
animals treated with AOM and in the colonie mucosa of vehicle-

treated animals as compared to their respective control groups.
The effect of PHITC on LOX and COX activities in AOM-induced

colonie tumors is summarized in Table 5. Markedly increased levels
(2- to 5-fold) of PCs and TXB, were found in colonie tumors

compared to the surrounding mucosa in animals on the control diet.
Administration of 640 ppm PHITC in the diet significantly increased
the formation of PCs (50-100%) and TXB2 (50%) in the colonie
mucosa and in tumors. In control animals, the levels of 5(5)-, 12(5)-
and 15(5)-HETEs formed were significantly (P < 0.001) higher in

colonie tumors than in the mucosa. PHITC in the diet significantly
enhanced the formation of 12(5)- and 15(S)-HETEs in colonie mu
cosa and that of 8(5)-, 12(5)- and 15(5)-HETEs in tumors; however,
5(5)-HETE formation was not significantly (P > 0.05) affected by

PHITC.

DISCUSSION

The major purpose of this study was to elucidate the role of
arylalkyl isothiocyanates in colon carcinogenesis. The known inhib-

Table 2 Effect nf PHITC on AOM-induced colon und small intestinal Mlenocarcinomu multiplicity in F344 rats

Tumors/animal Tumors/tumor-hearing animal

Colon Colon
F.xpcrimental

groupControl

diet

320 ppm PHITCInvasive0.53

Â±0.12'

0.54 Â±0.11Noninvasive0.97

Â±0.151.46Â±0.22'/

(/> < 0.04)Total"1.5

Â±0.192.0

Â±0.23d

(P s 0.05)Small

Intestine0.25

Â±0.09

0.17 Â±0.06Intestine''1.75Â±0.232.17 Â±0.28Invasive1.36

Â±0.13

1.36 Â±0.13Noninvasive1.46

Â±0.152.04

Â±0.21''

(P < 0.02)Total1.86

Â±0.182.41*0.23''

(P < 0.03)Small

Intestine1.3

Â±0.19

1.0 Â±0Intestine2.17Â±0.222.66 Â±0.26

MO ppm PHITC 0.86Â±0.17'' 1.67 + 0.30'' 2.53 + 0.40'' 0.28 + 0.41 2.81 Â±0.40'' 1.48 + 0.21 2.22 + 0.40'' 2.68 Â±0.40'' 1.1+0.11 2.8 + 0.42(P < 0.05) (P < 0.02) (P < 0.01) (P<O.OI) (P < 0.04) (P < 0.04)

" Total includes invasive plus noninvasive adcnocarcinomas.
'' Intestine includes colon plus small intestine.
' Mean + SEM.
'' Values in vertical column are significantly different from their respective control groups.
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COLON TUMOR PROMOTION BY PHITC

Fig. 3. Effect of PHITC on AOM-induced intestinal tumor size and site. A. large prolapsing colon tumor after the animal was fed 640 ppm PHITC for 38 weeks; B. deeply enduphytic
colon tumor; C, highly invasive cecal tumor; D, a large small intestinal tumor. Scale in centimeters.

Table 3 Effect of dietary PHITC on AOM-induced colon tumor size and volume in
male F344 rats

Experimental
groupControl

diet320

ppmPHITC640

ppm PHITC0-0.5

cm26"

(48.8)*26

(37.1)25

(27.5)Tumor

size0.5-

1.0cm18

(33.3)32

(45.7)31

(34.0)>1.0

cm10(18.5)12(17.2)35

(38.4)Tumor

volume (mm3)

(Mean Â±SEM)133

Â±32257

Â±88572

Â±156'

" Number of tumors per group.

Percentage of lumors having a particular size within the dietary group.
1 Significantly different from control diet group by / test; P < 0.016.

itor activities of the arylalkyl isothiocyanate PHITC in certain exper
imental tumorigenesis models provided a rationale for investigating
the effect of this agent in a well-established colon cancer model.

Arylalkyl isothiocyanates such as BITC, PE1TC, and PHITC admin
istered either before or during carcinogen treatment have proved to
inhibit carcinogenesis in the lung (10, 13, 15), esophagus (12), liver
(35), forestomach (9, 10), and mammary gland (9, 36). This suggests
that these agents possess antiinitiating activity in various organs. The
results of the present study are of great interest because long-term

feeding of PHITC at levels of both 320 and 640 ppm (approximately
40 and 80% MTD) during the initiation and postinitiation phases of

carcinogenesis enhanced colon tumorigenesis. These findings are in
agreement with those by Sugie et al. (17), who showed that admin
istration of BITC during the postinitiation stage increased the methy-
lazoxymethanol acetate-induced colon tumor formation in female
ACI/N rats. Importantly, results with PEITC in a recent short-term

bioassay in our laboratory indicate that this agent significantly
(P < 0.001) increases the colonie lymphatic nodules associated with
aberrant crypt foci, which are preneoplastic lesions in the colon.5

Further, long-term dietary administration of ally! isothiocyanate elic

ited hyperplasia and papillomas of the urinary bladder, and also
leukemia, as well as histopathological changes in the liver of male and
female rats (37). Also, PHITC enhanced the benzo[a]pyrene-induced

skin tumor multiplicity in A/J mice (38), and a similar effect was
observed with PEITC in DMBA-induced rat mammary tumorigenesis
(39). The colon tumor-promoting activity of PHITC observed in this

study is contrary to the reports of anticarcinogenic effects of PHITC
and related arylalkyl isothiocyanates against the chemically induced
cancers of the lung (14-16) and esophagus (12). These divergent

findings may be due to differences in the mode of administration of
the arylalkyl isothiocyanates. In most of the earlier studies, these
compounds were applied during the initiation stage, whereas we gave

5 C. V. Rao, B. Simi, and B. S. Reddy, unpublished data.
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Table 4 Effect oj PHITC on colonie nmcostil ami tumor PLA2. Pl-PLC activities, and

PGE2 levels in male F344 rats

Colonie mucosa

ExperimentalgroupCytosolic
PLA2 activity"

Control diet
Mil ppmPHITCPl-PLC

activity"

Control diet
Mil ppmPHITC'PGE,

levels"

Control diet
640 ppm PHITCSaline-treatedI4.5Â±

1.0*

25.6 Â±1.722.5

Â±2.5
18.2 Â±1.60.24

Â±0.04
0.49 Â±0.05'AOM-trealed24.7

Â±1.3d
37.6 + 1.9"^32.5

Â±2.6rf
28.7 Â±1.8'-''0.63

+ 0.09''
1.13 + 0.17'''Tumors71

Â±5.6
189 +ll.OF128

Â±6.3
112Â±5.34.74

Â±0.52
8.12 Â±0.90'

" PLAi activity is expressed as pmol oÃ"| C]arachidonic acid released/mg protein/mm
at 37Â°C.and Pl-PLC activity is expressed as pmol [' Hjinositol 1.4.5-triphosphate^ formed
from ['HIPII'ymgprolein/15 min al 37Â°C.PGE2 levels were expressed as ng of PGE2/mg

protein.
'' Mean Â±SEM (;i = ft).
' Significantly different from their respective control groups by Student's / test;

P < 0.05.
''significantly different from their saline-treated groups by Student's / test; P < 0.05.

dietary PHITC throughout the study, i.e., during initiation and post-

initiation phases. The results of our preliminary study and those of
Sugie e/ ai (17) support that administration of arylalkyl Â¡sothiocya-
nates before and during carcinogen treatment inhibits colon carcino-

genesis. It is, therefore, important that potential chemopreventive
agents, which are being considered for human clinical trials, must be
evaluated both during the initiation and postinitiation stages of carci-

nogenesis to establish the possible human utility of these agents. In
this context, it is noteworthy that several isothiocyanates, such as allyl
isothiocyanate, BITC, and PEITC, are major constituents of regularly
consumed mustard, watercress, and cruciferous vegetables (8, 40, 41).

One reason for tumor inhibition by PHITC in lung and esophageal
carcinogenesis when the agent is administered during the initiation
phase may lie in the ability of the agent to modulate carcinogen
metabolism (13-15, 42-44). The precise mechanism by which PHITC

inhibits colon tumorigcnesis when administered during the initiation
phase is not entirely known; but it is well known that isothiocyanates
are potent modulators of cytochrome P450 enzymes, which play a key
role in various carcinogen activation pathways (37, 45), including the
metabolism of AOM (46). It is, therefore, reasonable to assume that
these agents are predominantly initiation blockers, as shown in pre
vious studies (9-16). Our observation that dietary PHITC at the
100-ppm level inhibits colon carcinogenesis when administered dur

ing the initiation stage further supports its modulating effect on the
carcinogen metabolism. However, additional studies are needed to
examine whether the higher doses evaluated in the current study
would also inhibit colon tumorigenesis when administered only dur
ing the initiation phase.

The exact mechanism(s) by which long-term chronic administration

of PHITC enhances colon carcinogenesis are not clearly understood.
However, the involvement of cytochrome P450 Â¡sozymesshould be
considered because several of them play a pivotal role in the metab
olism of a wide array of xenobiotics and have been shown to be
involved in the metabolism of steroids, corticosteroids, vitamin D, and
biosynthesis of fatty acids, bile acids, HETEs, PCs, TXs, and leuko-

tricnes (47, 48). It has also been established that several of the
above-mentioned metabolites that are generated by the actions of
cytochrome P45()s significantly influence tumorigenesis (20-25, 48).

There is evidence that the type III cytochrome P450s are involved in
the catabolism of eicosanoid metabolites (20-22, 48). This is sup

ported by our finding that the administration of PHITC significantly
increased the induction of PGE^ and COX and LOX activities in

colonie mucosa and in tumors, suggesting that PHITC enhances AA
metabolism. The role of COX metabolites, particularly PGE2, in colon
tumor promotion has been well established (21, 48, 49). Previous
studies by us and others have shown that PG synthesis inhibitors such
as piroxicam, indomethacin, aspirin, and sulindac decrease colon
tumorigenesis in rodents (49-52). LOX metabolites such as 12(5)-

HETE promote tumor cell adhesion, stimulate the spreading of tumor
cells, and increase the metastatic potential of tumor cells (53, 54).
Furthermore, a positive correlation was observed between the levels
of 8(5)-HETE and degree of inflammation, hyperproliferation, clas-

togenicity, and tumor promotion by TPA (55). Also, the activities of
5(5)- and 15(5)-HETEs, which are potent modulators of inflamma

tion, were suppressed by lipoxygenase inhibitors, thus indicating that
HETEs mediate tumor promotion (56). The enhancement of colon
adenocarcinomas by PHITC in the present study was thus consistent
with the increase in most of the COX and LOX metabolites in the
colonie mucosa and tumors, suggesting that the colon cancer-promot

ing activity of PHITC is likely mediated through the increase in COX
and LOX metabolite production. The promoting effect of PHITC on
colon tumorigenesis in the current study could conceivably also be
due to low-grade toxicity induced by chronic feeding of high dietary

levels of PHITC. It needs to be emphasized that the 40 and 80% MTD
levels of PHITC used in this study were based on subchronic toxicity
assays.

We analyzed PLA, and Pl-PLC activities which are dominant

pathways for the AA release in both the colonie mucosa and tumor
tissues. One of the pathways leading to generation of AA involves a
direct action of PLA2 on a phospholipid that could include diacyl- or
uikylacyl-phosphatidylinositol, phosphatidylethanolamine, or phos-
phatidylcholine. The second pathway, mediated by Pl-PLC, involves
the degradation of phosphatidylinositol-4,5-biphosphate via a se
quence of reactions beginning with Pl-PLC, followed by diglyceride
and monoglyceride upases (24). Furthermore, Pl-PLC activity is
responsible for diacylglycerol formation, PKC-dependent signal trans-

duction, and cell proliferation (25, 57). We demonstrated that dietary
PHITC significantly enhanced the PLA-, activity in the colonie mu
cosa and in tumors, but that it had little or no significant effect on the
Pl-PLC activity. The exact mechanism by which PHITC increases the

PLA2 activity is not clear. It is possible that PHITC may exert its
enhancing effect by directly acting on PLA-, or, alternatively, by
acting on the regulators of PLA-,, resulting in increased levels of AA

and its metabolites. Further, in recent studies we observed that ani
mals fed PHITC and treated with AOM had an increased expression

Table 5 Effect tif PHITC on AOM-inttiitrtl fiilonic iniicttsiil ami munir COX unii LOX
nH'liibalism in F344 rals

Colonie mucosa Tumors

AAmetabolismCOX
activity"PGE,PGR,,PGD",ft-Kcio

PGF,,,TxB2LOX

activity''5(5)-HETE8(S)-HETEI2(S)-HETE15(5)-HETEControl

diet329

Â±13*355

Â±16243
Â±13378
Â±14260
Â±12211

Â±12312Â±21266

Â±14308
Â±22640

ppmPHITC685

Â±31'496
Â±37'387
Â±29'421

Â±18342
Â±21'278

Â±17359
Â±26524
Â±37'493
Â±32''Control

diet1577

Â±38938
Â±29550
Â±201193

Â±46973
Â±33313

Â±13348
Â±16585
Â±28428
Â±31640

ppmPHITC3463

Â±1031784
+54'973
Â±43'1942
+84'1579

Â±72''412Â±

18508
+32'1647

Â±73'1836
Â±64'

" Pmol of PG and TxB2 formed from [ Cjarachidonic acid/mg protein/15 min at
37Â°C.

* Mean Â±SEM (n = 6).
' Values in horizontal columns are significantly different from their respective control

diet group by Student's r test; P < 0.05-(UXK)1.
Pmol of HETEs produced from [ Cjarachidonic acid/mg protein/15 min at 37Â°C.
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of ras p21 protein as well as K-ra.v mutations in the colonie mucosa

and in tumors compared to those in animals fed control diet and
treated with AOM (58). On the basis of these results, it is reasonable
to state that PHITC modulates not only PLA2 to alter endogenous AA
availability but also COX and LOX activities.

In conclusion, the present study documents that dietary PHITC,
administered to male F344 rats during initiation and postinitiation
stages, significantly increases AOM-induced colon tumorigenesis in a
dose-dependent manner. Also, long-term feeding of PHITC signifi

cantly increases PLA,, COX, and LOX activities in colonie mucosa
and in tumors. These changes are relevant to colon carcinogencsis.
Although the exact mechanism(s) of colon tumor promotion by feed
ing of PHITC remains to be elucidated, it would appear that modu
lation of AA metabolism by PHITC may play a direct or indirect role.
The results of current and earlier investigations in animal models
emphasize that the studies for preclinical evaluation of potential
chemopreventive compounds must be designed to include long-term

administration during initiation and postinitiation stages if they are to
contribute to realistic and meaningful testing for the potential use in
humans. It would be irresponsible to rely solely on results obtained
with tests of the potential chemopreventive agents only during the
initiation phase of carcinogenesis. These critical aspects should gov
ern further development of isothiocyanatcs or any other novel com
pounds as potential chemopreventive agents.
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