








Table 2 Activity ofN. and 0-acetyItransferases (NATi and OAT) in relation to genotypes ofNATi and NAT2 in human urinarybladderNATGenotypenNAT!

(nmol/min/mg protein)OAT (pmol bound/mg DNA/mm/mgprotein)NAT!NAT!*4/NAT!*4172.3

Â±2.6â€•
(1.0â€”6.6)1.3

Â±0.6
(0.6â€”2.6)NAT!*4/NAT!*!O84.6

Â±1.6
(2.7â€”8.2)

p = 0026b1.3

Â±0.8
(0.5â€”2.9)

NSCNAT1*4/NAT!*!!13.32.0NAT2Slow

NAT2153.2 Â±2.2
(1.3â€”8.2)1.3

Â±0.8
(0.5â€”2.9)Rapid

NAT2112.8 Â±2.1
(1.0â€”7.6)

NS1.3

Â±0.6
(0.6â€”2.6)

NS

BLADDER NAT!, NAT2, AND DNA ADDUCTS

a Values represent mean Â± SD of (n) samples. Numbers in parentheses are the range.

b Mann-Whitney ranked sum test for differences between NATJ *4/NATJ *4 and NAT! *4/NAT! *!O genotypes.

C NS, no statistically significant differences.

carcinogenic aromatic amines and their metabolic polymorphisms
would be expected to affect the levels of DNA adducts in the carcin
ogen-target tissues and thus modulate bladder cancer risk (3).

Previously, Talaska et a!. (63) had shown that DNA adducts in
exfoliated bladder cells were lower in individuals with the rapid
NAT2 phenotype, a measurement that reflects enzyme activity pri
marily in the liver. NAT2 expression has also been reported at low
levels in the cultured urothelial cells (19, 64). In contrast, appreciable
NAT1 activity has been found in bladder tissues or cells (18, 19, 65).
Our results are consistent with these findings in that SMZ N-acetyla
tion could not be detected in human bladder cytosols but that sub
stantial NAT1 and OAT activities were present in all of the specimens
examined (Table 1). These activities varied 6- to 8-fold among the
samples, which was also comparable to previous observations (19).
However, we could not confirm a significant correlation between
NAT2 genotype and DNA adduct levels (63), but this was probably
due to limited sample size and lack of exposure information.

Since NAT1 has been shown in vitro to carry out the bioactivation
of various aromatic amine bladder carcinogens (66), it was not un
reasonable to suggest that variations in enzyme activity might affect
the levels of carcinogen-DNA adducts. In this context, NAT1 but not
OAT activity was found to correlate well (P < 0.01) with DNA adduct
levels (2.4 Â±2.0 adducts/108 dNp) in the bladder tissues (Fig. 2),
which varied about 25-fold among individuals. This observation was
remarkable since we could not adjust these data for individual differ
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Fig. 6. DNA adduct levels in urinary bladder of individuals with NAT) *4 and NAT! @!O
alleles. Differences in adduct levels between the two groups was described using box
and-whisker plot analysis. The box-and-whisker plot represents a characterization of the
data showing the 10th and 90th percentiles of data (ends ofihe whisker), the 25th and the
75th percentile (ends ofthe box), a line for the 50th percentile (solid line within the box),
and the average of the data (dashed line within the box). Data were also individually
presented (0) in each group. The difference in the average adduct level between the two
groups was statistically significant at the P 0.05 level.

ences in carcinogen exposure due to age, life style, or smoking status.
The levels of aromatic amine-DNA adducts measured in this study
were similar to those reported previously in bladder tissues from at
least four studies (5, 44, 63, 67) where DNA adduct concentrations
ranged up to 2 adducts/!08 dNp.

The variation of NAT1 activity that we observed was found not to
be normally distributed. However, a probit plot of NAT1 activity did
not allow a clear classification of modality (Fig. 3A). If the subjects
were categorized on the basis of the frequency distribution of the N:O
activity ratio of their bladder cytosols, determined by the probit plot
(Fig. 3B), an apparent antimode (cutpoint) was resolved near the
median value (i.e., at 2.2 X 102). The perspective of applying the N:O
activity ratio in arylamine-induced human bladder carcinogenesis was
introduced previously to conclude the possibility that the same en
zyme might catalyze both N- and O-acetylation reactions (19), where
this ratio was varied among the examined individuals by only â€”2-
fold. However, in another study, Kirlin et a!. (18) reported up to a
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Fig. 5. The percentage matching between NAT! phenotype and NAT! genotype in
human urinary bladder. The percentage matching was calculated in each category on the
basis of the number of samples with high or low N:O ratios (> or < 0.065) that correspond
to the presence of NAT! @!Oor NAT! @4alleles, respectively, in each group. The overall
matching is the sum of the matching in the two groups relative to the total number of
samples.
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Table 3 Le@'elsof bladder NAT! activitv, DNA adducts, and NAT!/OAT activity' ratio in relation to various combined NATIâ€”NA72genotypesNAT!.NAT2

genotypesnNAT! Activity (nmol/min/mg protein)RAL (adducts/108 dNp)(N:O ratio) X100â€•(a)

NAT!*4.Slow NAT2102.2 Â±1.31.4 Â±13b
P = 0.065 vs. (d)

2.6 Â±2.6

4.2 Â±1.6
P = 0.009' vs. (a)

3.0 Â±2.!0.287

Â±0.276

0.203 Â±0.273
P = 0.067 vs. (c)

0.480 Â±0.303

0.477 Â±0.260

(b) NAT!44.Rapid NAT2 6

(c) NATl*!O@Slow NAT2 4

BLADDER NAT!, NAT2, AND DNA ADDUCFS

(d) NAT!4!O-Rapid NAT2 5

2.3 Â±2.2
P = 0.045' vs. (c)

5.8 Â±2.5
P = 0.008 vs. (a)

3.5 Â±2.1
P = 0.10 vs. (c)

a The mean Â± SD (0.473 Â± 0.267) of [(c) + (d)] was significantly greater than the mean Â± SD (0.253 Â± 0.270) of [(a) + (b)]; P = 0.044.

b Values represent mean Â± SD of (n) samples.

C Mann-Whitney ranked sum test; other differences were not significant.

where the adduct concentrations were elevated significantly in the
high- versus the low-N:O ratio (3.2 Â±2.2 versus 1.7 Â±1.7 adducts/
108 dNP; P < 0.05) groups (Table 1). Individuals with slow NAT2
genotype have been reported in many studies to be at higher risk for
bladder cancer, particularly those who are occupationally exposed to
aromatic amines (71â€”73).Furthermore, 2â€”3times higher levels of
4-ABP hemoglobin adducts were found in slow acetylators as com
pared to the rapid acetylators who smoked the same quantity and type
of cigarettes, and the highest levels of adducts were found in individ
uals with rapid N-oxidation (CYP1A2) and slow N-acetylation
(NAT2) phenotype (17). In a recent study (27), levels of DNA adducts
in bladder cells and 4-ABP-hemoglobin adducts were determined in
humans, together with the phenotypes and genotypes of NAT2. Again,
among the slow acetylator individuals, levels of 4-ABP-DNA and
hemoglobin adducts were significantly higher compared to those
present in rapid acetylators. The present study, however, represents
the first report to demonstrate that an acetylation polymorphism for
NAT1 is a host factor that influences the levels of DNA adducts in
human urinary bladder. Moreover, a significant correlation was ob
tamed, even in the absence of exposure information. Thus, given
common exposures such as cigarette smoke, it appears that genetic
susceptibility is a predominant factor in carcinogen-DNA adduct
formation.

The present findings, along with the earlier reports (17, 27, 71â€”73),
suggest that individuals with exposure to carcinogenic aromatic
amines who possess a combined rapid NAT!-slow NAT2 phenotype/
genotype should be at highest risk for forming ultimate carcinogenic
metabolites, DNA adducts, and subsequently, for the development of
urinary bladder cancer. This hypothesis is supported by the data on the
combined effect of NAT] and NAT2 genotypes on bladder DNA
adduct levels (Tables 2 and 3). The highest levels of DNA adducts
were found in individuals with the combined rapid NAT! *]O..slow
NAT2 genotype (4.2 Â±1.6 adducts/!08 dNp), who also had the highest
levels of NAT1 activity (5.8 Â±2.5 nmol/min/mg protein; Table 3).
Since the number of samples in each subgroup was small and could be
attributed to chance, the reliability of NAT1 phenotyping (using N:O
ratio) was assessed by examining the concordance between NAT!
genotype and NAT1 phenotype. The concordance between NAT1
phenotype/NAT] genotype was 70% (Fig. 5), and N:O ratio in mdi
viduals with NAT! *]O allele was significantly higher than that in
those with NAT] *4 allele (see above).

Although the high/low-N:O activity ratio grouping could be somewhat
arbitrary, the differences in NAT1 activity (43 Â±2.3 versus 1.7 Â±0.7
nmol/min/mg protein; P < 0.00!; Table 1) seem likely to be attributable
to the effect of the NAT] *]O allele. In this regard, individuals with the
NAT] *]O allele had higher NAT! activity (4.6 Â± 1.6 nmol/min/mg
protein) in comparison to those who had the NAT] *4 allele (2.3 Â±2.6);
and the elevated levels of NAT1 activity in urinary bladder tissue samples
(see above) were paralleled by a comparable (â€”2-fold) significant in
crease (P < 0.05) in DNA adduct levels from 1.8 Â±1.9 adducts/!0@ dNp
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7-fold difference (comparable to â€”20-folddifference in our study) in
the N:O activity ratio, and they suggested that this variation might be
attributable to the genetic and phenotypic coregulation of NAT and
OAT activities. The lack of correlation that we obtained between
NAT1 and OAT activities might be due to the existence of the
multimodal distribution in NAT1 activity as well as the relative
contribution of NAT2 to OAT activity. The observation that NAT2
was poorly expressed in bladder cytosols (Ref. 19 and this study) at
levels insufficient to be detected by SMZ-dependent N-acetylation
procedures does not imply the absence of significant enzyme activity
in this tissue or of its role in aromatic amine metabolic biotransfor
mation reactions. Indeed, the lack of correlation between NAT1 and
OAT activities could be explained by an appreciable contribution of
NAT2 to OAT activity. Moreover, low NAT2 activities in bladder
would correspond to the high levels of expression of NAT2 in the
liver, which would be expected to predominate as a detoxification
pathway in vivo. Likewise, hepatic sulfation of arylamines and N-

hydroxy arylamines have been proposed as detoxification mecha
nisms for urinary bladder carcinogens (68). In this regard, the levels
at N-hydroxy arylamine sulfotransferase in the bladder were reported
to be only 1% of the activity found in liver.

In any case, the N:O activity ratio provided a better and practical
estimate that was used to segregate the studied individuals into two
NAT1 phenotypic groups: slow (low-N:O ratio, i.e., < 2.2 X 102) and
rapid NAT1 (high-N:O ratio, i.e., > 2.2 X 102) acetylators. This
suggests that the ratio of N- to O-acetylation in a given tissue is, in
fact, a ratio between the local activation and hepatic detoxification
(since OAT is catalyzed by NAT2 and NAT1) pathways that essen
tially determine the overall biotransformation reactions of carcino
genic arylamines (52). Moreover, the N:O activity ratio represents the
pharmacodynamic effect of the two pathways that are known to form
the ultimate carcinogenic N-acetoxy arylamine metabolite: (a) the
metabolic formation of the arylhydroxamic acid followed by an in
tramolecular N,O-acyltransferase reaction, catalyzed by NAT1 ; and
(b) the direct enzymatic formation of an electrophilic ester from an
N-hydroxy arylamine, catalyzed by OAT (16, 25). As shown in Table
3, individuals with NAT] *,1Oallele, whether slow- or rapid-NAT2, had
a significantly higher N:O activity ratio than individuals with NAT] *4
allele. Furthermore, the OAT activities differed significantly between
slow- and rapid-NAT1 phenotypes and also correlated well with
NAT1 activity in each individual phenotype (Fig. 4), a correlation that
was not obtained when the values were compared, regardless of the
phenotype. This data provided additional support for the existence of
two NAT1 phenotypes since the correlation between the expression of
NATs and OAT have been reported earlier in various human tissues
including liver (69), colon (70), and bladder (18, 19).

It is a generally accepted hypothesis that carcinogen-DNA adduct
formation will be affected by the extent of an individual's metabolic
proficiency. In the present series of specimens, a metabolic polymor
phism in NAT1 affected the levels of DNA adducts in bladder tissues
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in specimens with NAT]*4 to 3.5 Â±2.1 adducts/10@dNp in specimens
with NAT] *]O (Fig. 6), as was the two different phenotypes (Table 1).
Taken together, these observations indicate that a DNA sequence poly
morphism in the NAT! gene is associated with differences in NAT1
enzyme activity and with tissue DNA adduct levels in the human urinary
bladder. Moreover, these findings are consistent with the preliminary
findings of a recent epidemiological study that suggests that the NAT] *]O
allele is a strong risk factor in smoking-related bladder cancer (74). In
that study, the NAT] variant allele was found overall to be associated with
slightly increased risk of bliJder cancer in smokers but not in nonsmok
em (odds ratio, 1.7; P < 0.02); however, individuals with the homozygous
NAT] *!O genotype, who also smoke, were at a 26-fold increased relative
risk (P < 0.001) of developing urinary bladder cancer.

In our study, the relationship between DNA adduct formation and
smoking status could not be substantiated since donor information con
cerning sex, age, life style, medications, smoking, and drinking were not
available *r these bladder samples. However, in previous studies we
showed that several DNA adducts were significantly elevated in the
urothelium of smokers as compared to nonsmokers (46); and among
smokers, DNA adduct levels correlated well with both the number of
cigarettes smoked and the levels of carcinogen-hemoglobin adducts (68).
There is now a substantial amount of supportive epidemiological and
experimental evidence that aromatic amines in cigarette smoking are
causally associated with bladder DNA adduct formation and that these
adducts probably represent an initiating event for human urinary bladder
carcinogenesis (reviewed in Refs. 20, 22, and 25).

In conclusion, the enzyme that has long been thought to code for the
monomorphic NAT activity (i.e., NAT!) was shown in this study to be
regulated by a polymorphic gene, NAT] (32), and it is bimodally distrib
uted in the human urinary bladder in a manner that is significantly
correlated with the DNA adduct levels found in this tissue. Individuals
with the NAT] *!O allele (rapid NAT! genotype) were found to have
2-fold higher levels of both NAT1 enzyme activity and of aromatic
amine-DNA adducts, as compared to those with NAT!*4 allele (slow
NAT! genotype). Together with the known polymorphisms for NAT2,
CYP1A2, and sulfotransferase (reviewed in Ref. 74), it is evident that
metabolic phenotypes/genotypes can significantly influence DNA adduct

formation in urothelial cells and could ultimately lead to alterations in
bladder cancer risk. Therefore, cancer risk assessment procedures will
need to be redesigned to include biomarkers of susceptibility, especially
those involved in carcinogen biotransformation.
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