Description of a Novel Fusion Transcript between *HMGIC*, a Gene Encoding for a Member of the High Mobility Group Proteins, and the Mitochondrial Aldehyde Dehydrogenase Gene

Bernd Kazmierczak, Yvonne Hennig, Sylke Wanschura, Pierre Rogalla, Sabine Bartnitzke, Wim Van de Ven, and Jörn Bullerdiek

Center for Human Genetics and Genetic Counseling, University of Bremen, Leobenerstrasse, ZHG, D-28359 Bremen, Germany [B. K., Y. H., S. W., P. R., S. B., J. B.], and Center for Human Genetics, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium [W. V. d. V.]

Advances in Brief

Abstract

Aberrations involving the chromosomal region 12q24 are a nonrandom cytogenetic abnormality in frequent benign tumors mainly of mesenchymal origin, e.g., uterine leiomyomas, pleomorphic adenomas of the salivary gland, lipomas, or hamartomas of the lung. Mostly, these 12q24 abnormalities occur as a result of inversions also affecting chromosomal region 12q14—15. In addition to the frequent tumors mentioned above, these chromosomal abnormalities also have been found in rare mesenchymal tumors, e.g., hemangiopericytomas. Although recently the molecular basis of the cytogenetic abnormality in frequent benign tumors mainly of mesenchymal origin, e.g., pleomorphic adenomas of the salivary gland (1, 2), uterine leiomyomas (3—5), lipomas (6—8), or pulmonary chondroid hamartomas (9—11), show specific chromosomal abnormalities involving the region 12q14—15 leading to rearrangements of *HMGIC*, a gene encoding for the high mobility group family of DNA binding proteins (12—13). *HMGIC* proteins contain three DNA binding domains binding to the minor grooves of AT-rich DNA (14). Another chromosomal band non-randomly involved in these chromosomal rearrangements is 12q24, often as inversions also involving 12q14—15 (15, 16). Thus, in addition to the known *HMGIC* rearrangements, band 12q24 represents another interesting target for investigations at the molecular level.

To find a candidate gene in 12q24 rearranged by the chromosomal translocations, we used a primary uterine leiomyoma to characterize a fusion transcript between *HMGIC* and an ectopic sequence belonging to a the mitochondrial aldehyde dehydrogenase (ALDH2) gene mapping to 12q24.1 (17).

Materials and Methods

Tumor Material. A primary uterine leiomyoma from a 46-year-old woman was surgically removed. Immediately after surgery, one-third of the tumor was frozen in liquid nitrogen for RNA isolation, another one-third was used for cytogenetic analysis, and the remaining one-third was histologically examined. As a control for the RACE-PCR, the human hepatocellular cell line HEP 3B was used.

Cytogenetic Analysis. Chromosome preparation followed routine methods described earlier (2). Chromosomes were GTG banded. FISH. To identify the chromosomal abnormalities, FISH analysis was performed after GTG banding and a selected metaphase spreads. Treatment of metaphase spreads, subsequent FISH experiments, and cosmid labeling (with biotin-14-DATP) was performed according to the protocol of Kievits et al. (18). As DNA probes, a pool of cosmids, 27E12 and 142H1, flanking the third exon of the *HMGIC* gene (12), was used. The slides were analyzed on a Zeiss (Oberkochem, Germany) Axioskop fluorescence microscope. Results of FISH banding and FISH were processed and recorded with a Power Gene karyotyping system (PSI, Halladale, Great Britain).

3'RACE-PCR. One hundred mg of tumor tissue were homogenized, and total RNA was isolated using the Trizol reagent (BRL, Gaithersburg, MD) containing phenol and isothiocyanate. For cDNA synthesis, we used the adapter primer (AP2) AAG GAT CCG TCG ACA TC (exon 1), and in the second round of PCR, the following nested primer was used: 5'-CAU CAU CAU CAU CGC CTC AGA GAG GAC-3' (exon 1). In the first round of PCR, we used the specific forward primer 5'-CTT CAG CCC AGG GAC AAC-3' (exon 1), and in the second round of PCR, the following nested primer was used: 5'-CAU CAU CAU CAU CGC TCG ACA TC (exon 1). PCR thermal cycling (94°C, 3 min; 94°C, 1 min; 55°C, 45 s; 72°C, 3 min) X 30, 72°C, 10 min was performed with the AmpliTaq polymerase (Perkin Elmer, Weiterstadt, Germany). The PCR products were separated in 0.8% agarose. Cloning of the gel-extracted fragments was performed using the CloneAmp cloning system (BRL). Therefore, the nested specific primers and the universal amplification primer were CUA/CAG tail. Sequencing was performed on a 373 DNA sequencer (Applied Biosystems, Weiterstadt, Germany).

Results

A total of 11 GTG-banded metaphases of the primary tumor was cytogenetically studied. All showed an apparently normal karyotype 46, XX, but the band resolution was rather poor. In addition, FISH studies using a pool of cosmids belonging to the third exon of *HMGIC* were performed. The results revealed a rearrangement of this region in all metaphases analyzed. Using the cosmid pool, we observed a signal on a normal chromosome 12, a split signal on 12q15 and 12q24 on an obviously inverted chromosome 12, and a weak signal on a cytogenetically normal chromosome 14. To characterize possible aberrant fusion transcripts between *HMGIC* and ectopic sequences, 3'RACE PCR on the cDNA of the uterine leiomyoma was performed, resulting in the occurrence of bands of normal sizes (identical to the control) and one additional band of about 650 bp. The amplified DNA of this band was extracted from the gel, cloned, and sequenced. The analyzed sequence contained ectopic sequences fused to exon 3 of *HMGIC*. A homology search revealed a 100% identity of the ectopic sequence to the thirteenth exon of the mitochondrial...
aldehyde dehydrogenase gene (ALDH 2). The whole aberrant transcript contains the complete exons 1–3 of HMGI-C and the ectopic sequence, which starts with nucleotide 1 of exon 13 of the ALDH 2 gene, contains its whole translated part, and runs into the 3' noncoding region of that gene (Fig. 1).

Discussion

Aberrations involving the chromosomal region 12q14–15 are a nonrandom cytogenetic abnormality in frequent benign tumors mainly of mesenchymal origin, e.g., uterine leiomyomas, pleomorphic adenomas of the salivary gland, lipomas, or hamartomas of the lung. Recently, we were able to show that the breakpoints of these tumors are mainly clustered within intron 3 of HMGI-C, making it a good candidate gene for tumorigenesis (12). Nevertheless, abnormalities of other chromosomal bands, as a rule along with 12q14–15 abnormalities, have been described frequently. Such one band is 12q24, often affected by inversions or complex chromosomal rearrangements. Herein we have identified a fusion transcript between HMGI-C and ALDH 2 in a uterine leiomyoma with an apparently complex chromosomal rearrangement, as revealed by the results of the FISH experiments. Although we can only hypothesize that this type of transcript also accounts for the other tumors with 12q24.1 abnormalities reported in the literature, the findings presented here are of high interest per se because they provide another type of molecular rearrangement related to or even underlying the genesis of these frequent benign tumors. As for the molecular structure of the transcript described herein, it seems noteworthy that ALDH 2 has contributed no more than 10 codons to the translated part. Thus, it may well be that the truncation of HMGI-C rather than its fusion to ectopic coding sequences contributes to tumorigenesis. Alternatively or additionally, the novel noncoding 3' part of the transcript may be of importance by altering its stability. The investigation of additional fusion transcripts will help to resolve this interesting question.

Acknowledgments

We thank Dr. R. Stöller and R. Nimzyk for sequencing support. Furthermore, we thank Dr. U. Deichert for providing us with the tumor material.

References

Description of a Novel Fusion Transcript between *HMGI-C*, a Gene Encoding for a Member of the High Mobility Group Proteins, and the Mitochondrial Aldehyde Dehydrogenase Gene

Bernd Kazmierczak, Yvonne Hennig, Sylke Wanschura, et al.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/55/24/6038

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/55/24/6038. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.