Measurement of Radiation-induced Damage in Human Glioma Cells with Flow Cytometry

Jingli Wang, William Hyun, Kathleen Lamborn, and Dennis F. Deen

Brain Tumor Research Center of the Department of Neurological Surgery [J. W., K. L., D. F. D.], Department of Radiation Oncology [D. F. D.], and the Laboratory for Cell Analysis at Department of Laboratory Medicine [W. H.], School of Medicine, University of California, San Francisco, California 94143

ABSTRACT

Using flow cytometry, we studied DNA supercoiling changes in human glioma cell line SF-126 after irradiation. To release nucleoids (dehistonized DNA in a supercoiled form attached to the nuclear matrix), cells were lysed in a high-salt buffer. Radiation-induced changes in nucleoids were measured by flow cytometry as changes in forward light scatter. Propidium iodide titration curves showed that rewinding of DNA supercoils in irradiated cells was inhibited. To optimize the experimental conditions, we analyzed the effect of lysis time and nucleoid size distribution within the sample. Under optimal conditions, changes in nucleoids were detected after radiation doses as low as 0.5 Gy. The repair of radiation-induced damage in nucleoids followed biphasic kinetics; 50% of the damage was repaired within about 5 min, and the remainder within about 30 min. Interestingly, irradiated S-phase cells showed less damage, as measured by this assay, than irradiated G2- or G2-phase cells, which is consistent with the relative radioresistance of S-phase cells as measured with cell survival assays. Our findings show that flow cytometric measurement of supercoiling changes is a sensitive and relatively rapid method for quantitating radiation-induced damage in individual cells.

INTRODUCTION

The nucleoid assay measures changes in the state of DNA supercoils and integrity of the attachment of DNA loops to nuclear matrix in individual eukaryotic cells (1–3). This assay uses a DNA intercalating fluorescent dye, such as PI.

The size of the nucleoid increases with an increase in PI concentration up to the maximum point where the DNA supercoils are fully unwound. An additional increase in PI concentration causes rewinding of DNA supercoils and produces a decreased nucleoid size. The rewinding process is dependent on topological constraint of DNA loops and integrity of the attachment of DNA loops to nuclear matrix. Ionizing radiation produces several types of DNA damage, including single- and double-strand breaks, base and sugar damage, and macromolecular cross-links (4). Some of these lesions alter the topological constraints on DNA loops, which inhibits the rewinding of DNA supercoils (2, 3, 5) and results in an increase in nucleoid size.

The nucleoid assay usually has been done with a fluorescence microscope and an image analysis system (1–3, 6). The major disadvantages are that it requires a sophisticated image analysis system and it is time consuming to measure large numbers of nucleoids. In contrast, commercial flow cytometers have become relatively user-friendly and can analyze thousands of nucleoids rapidly (7–9). Flow cytometry of nucleoids stained with fluorescent dye can measure both scattered light and fluorescence intensity; light scattered in the forward direction of the integrating laser beam proportionally represents the cross-sectional area of the measured nucleoid. However, the fragility of nucleoids has made it technically difficult to perform this assay using flow cytometry. In this study, we optimized the nucleoid assay for measuring radiation-induced damage with flow cytometry in human brain tumor cells.

MATERIALS AND METHODS

Cell Culture and Irradiation. Mycoplasma-free SF-126 human brain tumor cells were grown as monolayers in EMEM supplemented with 10% FCS and nonessential amino acids (10). Confluent cells were used for all experiments except those conducted to analyze cell cycle effects, which used log-phase cells. Cells were removed from flasks with 0.05% trypsin, 0.02% EDTA, 0.1% glucose, and 0.058% NaHCO3. Single-cell suspensions were washed with cold PBS (Mg2+ and Ca2+ free), resuspended in PBS at a concentration of 4 x 106 cells/ml, and irradiated on ice with a Phillips X-ray machine (Ridge Inc., Tucker, GA) at a dose rate of 1.26 Gy/min. Cells were centrifuged and resuspended in PBS at a concentration of about 4 x 106 cells/ml.

Preparation of Nucleoids. Immediately after irradiation, or after a desired repair time at 37°C, nucleoids were prepared by mixing one-tenth volumes of cell suspension (4 x 106 cells/ml) with lysis solution [1 M NaCl, 10 mM EDTA, 0.1% glucose, and 0.058% NaHCO3. Single-cell suspensions were washed with cold PBS (Mg2+ and Ca2+ free), resuspended in PBS at a concentration of 4 x 106 cells/ml, and irradiated on ice with a Phillips X-ray machine (Ridge Inc., Tucker, GA) at a dose rate of 1.26 Gy/min. Cells were centrifuged and resuspended in PBS at a concentration of about 4 x 106 cells/ml.

Flow Cytometric Analysis. Flow cytometry was performed on a FACScan (Becton Dickinson, San Jose, CA) bench top flow cytometer equipped with an air-cooled argon-ion laser at 488 nm. Nucleoid suspensions were run at a flow rate of 12 µl/min; the sample tube was clad with an external ice water jacket to reduce effects of temperature change. All samples were collected with a standard sample line, with the tip positioned at the bottom of the sample tube. Isoton II, a balanced electrolyte solution (Coulter, Hialeah, FL), was used as sheath fluid. All experiments were done in a darkened room to minimize photobleaching. Nucleoid size was monitored by FSC, fluorescent light from PI-bound DNA was measured at 575–626 nm (FL2-H, fluorescence pulse height), and doublets were discriminated by fluorescent pulse width (FL2-W, fluorescence pulse width) and area (FL2-A, fluorescence pulse area). Normally, about 20 to 35% of the particles in unirradiated and irradiated samples was discriminated as doublets, clumps, and debris. Sample collection time was recorded at 1- or 2-s intervals, depending on sample volume. All data were acquired within the 1024-channel dynamic range of the photomultiplier detectors. The acquisition threshold was set on fluorescent-positive events above channels 36–68, depending on the PI concentration; all event gating was done after acquisition.

The data were analyzed with the Lysis II (Becton Dickinson) program. After gating the data to exclude doublets, clumps, and debris, the mean channel number of FSC was taken as a measure of nucleoid size. Cells in different phases of the cycle were determined from histograms of DNA content (fluorescence intensity of PI-stained DNA) from nucleoids. This is based on the fact that G1-phase cells contain one-half as much DNA as G2-M-phase cells and that the DNA content of S-phase cells is between that of G1 and G2-M-phase cells. When nucleoids were prepared in this study, the G2-M peak contained only G2-phase nucleoids; M-phase nucleoids were seen as individual chromosomes.

Statistical Analysis. Six experiments were used to evaluate the effect of radiation on cells in S, G2, or G2 phase. For each experiment, three differences, S — G1, S — G2, and G1 — G2, were calculated. All subsequent analyses were based on these differences. To test for differences at baseline (0 Gy), we used the Wilcoxon signed rank test with the difference from each experiment as the observation. To test for a differential dose effect, the difference, e.g., S — G1, was considered as a dependent variable in an analysis of covariance, with dose...
and experiment in the model. Statistically significant coefficients for the dose effects would indicate that the size of the difference changed with dose, implying a differential dose effect. Because it is possible that at the higher doses the damage (expressed as FSC) in the S phase might have reached a plateau, the analysis excluded the 2-Gy dose. Because of the small sample size, no adjustment was made for multiple testing.

RESULTS

Effects of Lysis Time and Nucleoid Size Distribution. The effect of lysis time on FSC is shown in Fig. 1. In both irradiated and unirradiated nucleoids, FSC increased with increasing lysis time. FSC was greater in irradiated nucleoids than in unirradiated nucleoids at all lysis times longer than 10 min. When all nucleoids in the sample tube were collected, we found that the smaller ones tended to stay at the bottom of the tube and, therefore, were collected before the larger nucleoids, which were mostly found at the top of the tube (Fig. 2). The uneven size distribution was more obvious in large samples (0.5 ml) than in small samples (0.1 to 0.15 ml). In general, nucleoids from control samples could be collected in less time than nucleoids from irradiated samples of equal volume, perhaps because irradiated cells had larger halos, which increased the viscosity of the solution.

When all nucleoids in the sample were collected, radiation-induced changes in FSC were similar after 15 or 30 min of lysis (Fig. 3). Therefore, we selected 15 min as our standard lysis time, and we collected all of the nucleoids in small sample volumes (0.1–0.15 ml).

Radiation-induced Damage and Repair in SF-126 Cells. When cells were stained with increasing PI concentrations (10 to 80 μg/ml), rewinding of DNA supercoils was inhibited by 1 Gy of radiation (Fig. 4). At a high PI concentration (40 μg/ml), FSC increased with increasing radiation doses from 0.5 to 5 Gy and then reached a plateau (Fig. 5).

The radiation dose-response curves of cells in different phases of the cell cycles are shown in Fig. 6. FSC from unirradiated cells was dependent on cell cycle phase with S-phase cells > G₂ phase cells > G₁ phase cells (P = 0.03). Evaluation of dose effects showed no difference between G₁ and G₂ (P = 0.19). The differences in FSC between S and G₁ or S and G₂ decreased with increasing dose (P < 0.001). This represents a differential dose response, with S-phase cells less affected by radiation.

The repair of radiation-induced damage expressed in nucleoids is...
The curve followed biphasic kinetics. Radiation-induced damage in nucleoids was repaired very quickly; ~50% of damage was repaired within 5 min, and all damage was repaired within 30 min.

DISCUSSION

This study shows that radiation-induced damage in human brain tumor cells can be measured by the nucleoid assay performed with flow cytometry. However, the nucleoids are fragile, and the conditions of the assay must be optimized, including detergent (Triton X-100) concentration, salt (NaCl) concentration, cell concentration, lysis time, and the number of cells collected. To detect damage produced by a low radiation dose, we found that SF-126 cells must be lysed for
at least 10 min on ice. To obtain a representative measurement in this cell line, we found that all nucleoids from small samples (0.15 ml or less) must be analyzed because the size distribution of nucleoids within samples is uneven. The uneven size distribution may result from different densities of individual nucleoids; larger nucleoids have low density and float on the top of the sample, and smaller nucleoids have higher density and settle toward the bottom of the sample.

Under optimal conditions, this assay is very sensitive for measuring radiation-induced damage in cells. At radiation doses as low as 0.5 Gy, a 52% increase in FSC was observed. The kinetics of repair of radiation-induced nucleoid damage were biphasic. Because nucleoid damage is mostly due to DNA single-strand breaks, it was repaired quickly (11). About 50% of the initial damage was repaired within 5 min, and the remainder of the damage was repaired within 30 min.

The higher FSC in unirradiated G2-phase nucleoids compared to G1-phase nucleoids is to be expected, considering the larger size of G2 cells. Unirradiated S-phase nucleoids showed an even higher FSC than G2-phase nucleoids. This may result from the loose attachment of DNA loops to nuclear matrix during DNA replication in S phase and/or from the growth forks that act like strand breaks in this assay (1, 12). Our results also showed less radiation-induced nucleoid damage in S-phase cells than in cells in G1 or G2 phases. Such differences were not due to the saturation of the assay, because they were statistically significant without including the highest dose (2 Gy). This finding is consistent with unpublished results from colony-forming assays of SF-126 cell survival observed in our laboratory, which have shown increased radioreistance in S-phase cells.4 The relative radioreistance of S-phase cells is also common to other cell lines (13).

Other investigators have shown less radiation-induced nucleoid damage in radioresistant than in radiosensitive cells using flow cytometric analyses (7, 9, 14) or using a microscope combined with an image analysis system (15–20). These findings suggest that the nucleoid assay may be a potentially useful method for determining the radiosensitivity of human brain tumor cells.

ACKNOWLEDGMENTS

We thank Dr. Andrew Vaughan (Loyola University, Chicago, IL), Dr. Hirak Basu (University of Wisconsin, Madison, WI), and Dr. Bert Feuerstein (University of California, San Francisco, CA) for helpful discussions. We also thank Cheryl Christensen for manuscript preparation and Stephen Ordway for editorial assistance.

REFERENCES

4 N. Gupta, L. Hu, and D. F. Deen, unpublished data.
Measurement of Radiation-induced Damage in Human Glioma Cells with Flow Cytometry

Jingli Wang, William Hyun, Kathleen Lamborn, et al.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/56/1/154

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/56/1/154. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.