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pl6/MTS-1 ALTERATIONS IN PANCREATIC CANCER
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Fig. 2. Immunoblot analysis of p/6/MTS-I expression in representative pancreatic
ductal cell lines. Protein lysates (100 pg/lane) were prepared as described (31), separated
by SDS-PAGE, electroblotted to nitrocellulose membranes, and immunoblotted with
anti-p16 antibody as detailed in “Materials and Methods.” Top row, human carcinoma cell
lines: SW979 cells (Lane 1), HS766T cells (Lane 2), CAPAN-1 cells (Lane 3), SAOS-2
cells (osteosarcoma line; Lane 4), T3M4 cells (Lane 5), PANC-89 cells (Lane 6), Colo
357 cells (Lane 7), PANC-1 cells (Lane 8), and recombinant human p/6/MTS-1 standard
(rb hp16; Lane 9). Bottom row, CF-PAC-1 cells (Lane 10), PAN-1 cells (hamster ductal
carcinoma cells; Lane 11), Ck-1 cells (Lane 12), buffer blank (Lane 13), SAOS-2 cells
(Lane 14), Ck-2 cells (Lane 15), Ck-3 cells (Lane 16), buffer blank (Lane 17), and
recombinant human p/6/MTS-I standard (rb hpl6; Lane 18). Ck-1, -2, and -3 are
immortalized, nontransformed hamster pancreatic ductal epithelial cells.
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Fig. 3. Representative SSCP analyses of exons 1 (A) and 2 (B) of p/6/MTS-1 gene in
primary ductal pancreatic carcinomas and cell lines. SSCP analyses of genomic DNA
were conducted as described in “Materials and Methods.” A, Lanes 1-3, PANC-89, Colo
357, and HPAF cell lines, respectively. B, Lanes 4-6, cell lines QGP-1, FG-2, and
SW979, respectively; Lanes 7-9, primary pancreatic tumor DNA samples. Fragment / is
the PCR product of primer pairs HM12Si and HM12iAl; fragment 2 is the product of
primer pairs HM12iS and HM12A. Electrophoresis conditions shown are 6% nondena-
turing polyacrylamide with 10% glycerol and 0.5X TBE buffer.
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observation that 9 (30%) of 27 pancreatic carcinoma xenografts
revealed homozygous deletions in the p/6/MTS-1 gene (27).

To screen for mutations in the p/6/MTS-1 gene, PCR and SSCP
analyses and sequence analyses were conducted on genomic DNA
from microdissected primary tumors and cell lines. Seven (39%) of 18
cell lines and 5 (16%) of 30 primary carcinomas revealed reproducible
SSCP abnormalities under two distinct electrophoresis conditions
(Fig. 3, A and B). All but one of the samples exhibiting SSCP band
shifts were subjected to direct dideoxy sequencing and/or subcloning
to confirm the nature of p/6/MTS-I mutations.

Table 1 summarizes the confirmed deletion, SSCP, and DNA
sequencing data for the panel of 18 cell lines and 30 primary micro-
dissected pancreatic tumor lesions. Missense mutations, microdele-
tions, and insertions in the p/6/MTS-1 gene were observed in both cell

lines and primary tumors (Fig. 4, A-C). In the present study, the
overall frequency of p/6/MTS-1 alterations (deletions and mutations)
observed in pancreatic carcinoma cell lines was 66%, whereas only
27% of primary carcinomas revealed such abnormalities. The fre-
quency and nature of p/6/MTS-1 abnormalities observed in pancreatic
carcinoma cell lines (Table 1) were comparable to those reported
recently (26, 27); an exception being the observation of a 7-bp
insertion in codons 11 and 12 of CAPAN-2 cells in contrast to the
6-bp insertion described by others (26, 27). In addition to confirming
pl6/MTS-1 deletions and mutations in pancreatic carcinoma cell lines
described by others (26, 27), we have extended these findings to
several additional cell lines and subclones (FG-2, HPAF, CD-11, and
CD-18), whereas the remaining pancreatic carcinoma cell lines
(PANC-89, Colo 357, CF-PAC-1, QGP-1, SW 979, T3M4, and
HS700T) had a wild-type p/6/MTS-1 gene and moderate expression
of the p16 protein (see Fig. 2).

Our observed frequency of pl6/MTS-1 deletions and mutations in
primary ductal pancreatic carcinomas is lower than that reported for
pancreatic carcinoma xenografts by Caldas et al. (27), although sim-
ilar types of mutations were confirmed in both studies. The marked
desmoplastic reaction characteristic of pancreatic ductal carcinomas
can confound molecular analyses of tumor cells due to contamination
from surrounding nonneoplastic stromal and inflammatory elements.
To circumvent this variable, Caldas et al. (27) analyzed xenograft
explants of primary pancreatic carcinomas. We have microdissected
our primary carcinomas both to limit contamination from nonneoplas-
tic elements and to enrich for tumor cells (29). Neither approach is
completely free of artifactual and nonneoplastic contamination influ-
ences. Thus, the approach we have taken in this study may underes-
timate the frequency of p/6/MTS-1 alterations in pancreatic carcino-

Table | Summary of pl16/MTS-1 alterations in human ductal pancreatic cancer:
deletion and mutation analyses of tumor cell lines (n = 18) and microdissected
primary carcinomas (n = 30)

Cell Homozygous DNA sequencing alterations®
line/tumor deletionof SSCP band (codon, nucleotide change,
pathology no. pl6 gene” shife” amino acid change)
PANC-1 + N/Ap N/Ap?
MIAPACA2 + N/Ap N/Ap
SU86-86 + N/Ap N/Ap
BXPC-3 + N/Ap N/Ap
CAPAN-1 + N/Ap N/Ap
FG-2 - Exon 2 cd44, ATG—AAG, M—K
HS766T - Exon 2 Start of intron 2, AGGT—AGGC
ASPC-1 - Exon 2 cd69, 2-bp deletion,
ACTCTC—ACTC
CAPAN-2° - Exon 1 cds11-12, 7-bp insertion,
CGCGCAC
HPAF - Exon 1 ¢ds26-27, GCG GTG—G TG
98635CA + N/Ap N/Ap
93412 CA® + N/Ap N/Ap
93-11-8455 CA + N/Ap N/Ap
92-S-5283 CA - Exon 2 cd43, GTC—ATC, V-l
94-14360 CA - Exon 2 ¢d49-50, 2-bp deleletion,
GCC CGA—GC__GA
93-12485 CA - Exon 2 cd43, GTC—ATC, V-l
93-04-A221 CA - Exon2  Deletion”
93-05C305 CA - Exon 1 cd34, AAT—-GAT, N—D

“ Based on PCR-based assay of exon 2 as described in “Materials and Methods™; +
deleted; —, not deleted.
® Confirmed band shifts under two nondenaturing electrophoresis conditions as de-
scribed in “Materials and Methods.”
¢ Data shown in result of direct sequencing data confirmed by subcloning in each case.
4 Not applicable in samples in which pl6 gene is deleted.
¢ Subcloning and sequencing of this cell line by a commercial laboratory (Bioserve
Bnowchnology) also revealed a 1-bp deletion (G) in cd27 in several subclones.
/Two additional subclones of HPAF cells, CD-11 and CD-18, showed identical band
shifts.
# Homozygous deletion within this tumor sample was detected at 20 PCR reaction
cycles, not the standard 35-cycle PCR reaction.
 PCR-based assay of exon 2 revealed a large deletion in the 5’ portion of exon 2.
Sample DNA was not available for sequencing.
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Fig. 4. Sequence analysis of p/6/MTS-1. Pancreatic carcinomas positive for an exon-specific SSCP abnormality were PCR amplified and sequenced following subcloning as detailed
in “Materials and Methods.” A, exon 2, codon 44, T-to-A mutation in cell line FG-2. B, exon 1, codon 26-27, 2-bp deletion in HPAF cells. C, exon 1, codon 34, A-to-G missense
mutation in tumor 93-05C-305. Normal adjacent tissue from this case had a wild-type p/6/MTS-1 sequence (data not shown). Additional information on these cases is provided in Table 1.

mas. However, to avoid possibly underestimating the frequency of
homozygous deletions in pl/6/MTS-1 due to contamination with
normal DNA, we carried out multiplex PCR at a lower number of
cycles. In contrast, the xenograft approach could overestimate the
mutation frequency as a result of additional genetic changes con-
ferring an in vivo selective growth advantage analogous to those
described in tumor cell cultures (see Refs. 19 and 20). In addition,
the possibility that p/6/MTS-1 mutations in primary pancreatic
carcinomas were not detected by SSCP and sequence analyses or
lie outside of the regions studied (e.g., exon 3 of p/6/MTS-1) must
be considered. Consequently, differences in the methodological
approaches used may account, in part, for the findings obtained in
our respective studies.

The results obtained in this study are largely in agreement with
those of previous studies examining a variety of human tumor-derived
cell lines (13, 14, 21, 22, 32) in which pI6/MTS-1 deletions or
mutations were frequent occurrences. Moreover, recent studies of
primary carcinomas of the lung, bladder, kidney, brain, breast, and
head and neck (19-23), as well as hematopoietic tumors (33), have
provided evidence that p/6/MTS-1 deletions and mutations are more
frequent in cell lines than in primary tumors and are dependent on the
tumor type. A notable exception to these observations is the recent
report of mutational inactivation of the p/6/MTS-1 gene in ~50% of
primary esophageal squamous cell carcinomas by one group (24, but
see Ref. 25) and the high frequency of pl6/MTS-1 alterations in
glioblastomas and anaplastic astrocytomas (15-18). In contrast,
pl16/MTS-1 genetic alterations appear infrequently in colorectal car-
cinomas and neuroblastomas (see Ref. 13), as well as in a series of
melanoma cases (34). Homozygous loss or mutational inactivation of
p16/MTS-1 in tumor cell lines may dysregulate normal cellular growth
controls and may confer a selective growth advantage to cells in in
vitro culture (19-23). Similar hypotheses for genetic alterations con-
ferring a growth advantage to cells in vitro have been proposed for the
loss or inactivation of the p53 gene in a variety of tumor types (35),
the amplification of the N-myc gene in neuroblastoma cells (see Ref.
36), and the overexpression of the bcl-2 gene in lymphomas, myeloid
cells, prostate carcinomas, and sensory neurons upon growth factor
deprivation in vitro (37, 38).

Available evidence suggests that the p5S3 and pl16/MTS-1 proteins
are rate-limiting regulators of tumor cell growth converging at path-
ways of cyclin and cdk inhibition, with pl6/MTS-1 acting directly as
a specific cyclin D and cdk4 inhibitor (12) and p53 acting indirectly
via activation of the transcription of WAF-1/p21, a universal cdk
inhibitor (39, 40). One could speculate that the loss or inactivation of
one such cdk inhibitor gene could obviate the need for loss or
inactivation of the other (see Ref. 21). Alternatively, inactivation of

either p53 or pI6/MTS-1 could create a selective pressure for the
subsequent loss or inactivation of the other, as suggested by Caldas et
al. (27) in their studies of pancreatic tumorigenesis. Our ongoing
analyses of the p53 gene and protein in a large series of pancreatic
ductal carcinomas and metastases lend support to the latter hypothesis,
suggesting that alterations in p53 as well as p/6/MTS-1 are occurring
in specific ductal pancreatic cancers and cell lines, although the
frequency of p53 inactivation is higher than that observed for
p16/MTS-1 in the present study.*

Our molecular and immunochemical analyses (28) of the RB-1
tumor suppressor gene and protein and the RB-1-associated cell-cycle
regulator cyclin DI/PRAD-1 reveal that these growth regulatory
genes and proteins are altered infrequently in ductal pancreatic
cancers. In this case, the loss or mutational inactivation of pl16/
MTS-1, a regulator of RB-1 function in cellular growth control
(12-14), may obviate the need for the loss or mutational inactiva-
tion of RB-1 and cyclin DI/PRAD-1 in this growth-regulatory
pathway in a subset of pancreatic carcinomas and cell lines.
Alternatively, it has been demonstrated (31) that expression of
pl16/MTS-1 peaks at the G,-S transition within the cell cycle and is
enhanced in cells in which RB-1 is functionally inactive. Tran-
scriptional repression of the pl6/MTS-1 promoter by the RB-1
protein has been reported (41), although it remains to be deter-
mined whether this regulation is mediated directly by RB-1 or is an
indirect effect involving the release of an active RB-1-associated
transcriptional factor such as E2F. In support of these observations,
a number of recent studies have demonstrated an inverse relation-
ship between loss of a functional RB-1 protein and increased
pl6/MTS-1 expression in several tumor types (31, 42, 43; see Ref.
44). We cannot state unequivocally that this inverse relationship is
supported by the data presently available, because virtually all of
our pancreatic carcinoma cell lines had functional RB proteins
(28).

Our studies of p]6/MTS-1 alterations in human ductal pancreatic
carcinomas and cell lines suggest that, although this putative tumor
suppressor may play a role in the dysregulated growth of pancre-
atic cancer, abnormalities in this gene occur more frequently in
tumor-derived cell lines than in primary ductal carcinomas. Further
studies are required to elucidate the role(s) of p/6/MTS-1 in RB-1-
related cell growth regulatory pathways and to confirm its putative tumor
suppressor function by gene replacement studies in pancreatic tumor cells
in which p16/MTS-1 is deleted homozygously or inactivated by mutation.

4 Manuscript in preparation.
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