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MITOGENIC SIGNALING BY ET-1 IN OVARIAN CARCINOMA CELLS
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Fig. 2. A, Time course of c-fos mRNA induction in ET-1-stimulated OVCA 433 cells.
Total RNA was isolated from quiescent or ET-1-treated (100 nm) cells at the indicated
times during stimulation. B, hybridization signals were quantified and expressed as
relative levels of specific mRNA normalized to those of GAPDH mRNA levels in the
same blot.
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Fig. 3. Blockade of ET-1-stimulated c-fos mRNA expression by an ET, receptor
antagonist. Quiescent OVCA 433 cells were stimulated with ET-1 (100 nm) in the absence
or presence of BQ123 (1 um) for 30 min. Total RNA was isolated and Northern blots were
probed for the expression of c-fos mRNA.

[*H]thymidine incorporation (Fig. 4). However, PTX treatment
slightly reduced the [*H]thymidine response to FCS, consistent with
the presence of PTX-sensitive mitogenic signaling pathways in ovar-
ian carcinoma cells. These findings indicate that ET-1-stimulated
mitogenic signaling in ovarian cancer cells is mediated by a PTX-
insensitive G protein, probably of the G,,;, group.

Role of Protein Kinase C in ET-1-induced DNA Synthesis. To
analyze the contribution of PKC to mitogenic signaling by ET-1,
quiescent OVCA 433 cells were treated with 800 nM GF 109203X, a
PKC-selective bisindolylmaleimide inhibitor. This compound, when
applied at a concentration known to inhibit DNA synthesis induced by
PKC-activating mitogens (24), markedly attenuated the subsequent
stimulation of [*H]thymidine incorporation by ET-1 but not that
induced by EGF (Fig. 54). The latter finding indicates that inhibition

of the mitogenic response to ET-1 was specific and not due to
cytotoxicity. Similarly, addition of 0.1 nM staurosporine, a potent but
less selective inhibitor of PKC, markedly inhibited ET-1 induced
[*H]thymidine incorporation (data not shown). Furthermore, depletion
of PKC by pretreatment of cells with TPA reduced the subsequent
stimulation of [*H]thymidine incorporation by ET-1 but had no effect
on the response to the EGF (Fig. 5B). Although these results indicate
that mitogenic signaling by ET-1, but not by EGF, requires PKC, they
suggest that activation of PKC is not alone sufficient to mediate this
response. The extent to which stimulation of PKC can mimic the
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Fig. 4. Effect of PTX on ET-1-stimulated incorporation of [*H]thymidine. Quiescent
OVCA 433 cells were treated with ET-1 (100 nm) or 10% FCS. Where indicated, the cells

were incubated with PTX (100 ng/ml) for 6 or 16 h before agonist stimulation. Data are
means of results from three experiments, each performed in sextuplicate. Bars, SD.
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Fig. 5. Effects of PKC inhibition and depletion on ET-1-stimulated [*H]thymidine
incorporation. A, ET-1 or EGF was added to quiescent OVCA 433 cells or quiescent cells
pretreated with 800 nM GF 109203X for 30 min to inhibit PKC. B, ET-1 (100 nm) or EGF
(10 ng/ml) was added to cells pretreated with 100 nm TPA for 16 h to deplete PKC. In the
last experiments, 10 nM TPA or 100 nM OAG were added alone to quiescent cells to
activate PKC. In all cases, [*H]thymidine incorporation was analyzed 24 h after the
addition of agonists. Data are means of results from three experiments, each performed in
sextuplicate. Bars, SD.
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Fig. 6. Effects of tyrosine kinase inhibition on ET-1-stimulated [*H]thymidine incor-
poration. A, Quiescent OVCA 433 cells were preincubated for 16 h in the absence (&) or
presence (A) of 1 um herbimycin A before addition of increasing concentrations of ET-1.
B, cells were preincubated for 30 min in the absence (O) or presence (M) of 6 pg/ml
genistein before addition of increasing concentrations of ET-1. Thymidine incorporation
was measured 24 h later. Data are means of results from three experiments, each
performed in sextuplicate. Bars, SD.

effects of ET-1 was examined in OVCA 433 cells treated with the
PKC activators OAG and TPA. These agents only slightly increased
[H]thymidine incorporation and did not reconstitute the growth fac-
tor-like action of ET-1 on this response (Fig. 5B).

Effects of Tyrosine Kinase Inhibitors on ET-1-Stimulated DNA
Synthesis. ET-1 has been shown to increase tyrosine phosphorylation
of cellular proteins, but it is not clear whether this response is linked
to mitogenesis (25, 26). To evaluate the functional significance of
ET-1-stimulated tyrosine phosphorylation, the [*H]thymidine incor-
poration response of cells stimulated by ET-1 was measured after
pretreatment with herbimycin A, a benzoquinoid inhibitor of cellular
tyrosine kinases (27). As shown in Fig. 6A, herbimycin A prevented
[>H]thymidine incorporation in response to all concentrations of ET-1
tested. Furthermore, genistein, a chemically and functionally dissim-
ilar inhibitor of tyrosine kinase activity (28), also completely pre-
vented [*H]thymidine incorporation in cells treated with mitogenic
concentrations of ET-1 (Fig. 6B). These data are consistent with the
hypothesis that stimulation of tyrosine phosphorylation is necessary
for mitogenic signaling by ET-1.

ET-1 Stimulates Tyrosine Phosphorylation of FAK (p125FAK),
The observation that tyrosine-phosphorylated substrates in the 115-
130-kDa region were present in protein extracts from ET-1-stimulated
cells (data not shown) led us to test whether p125FAX was phospho-
rylated during agonist action in OVCA 433 cells. p125¥4X is a newly
identified tyrosine kinase that becomes rapidly phosphorylated on
tyrosine residues after integrin-mediated cell spreading and adhesion
(29) and also when cells are stimulated by mitogenic peptides or
transformed by v-src (30). Immunoprecipitation of p125¥4%¥ demon-
strated that the enzyme was tyrosine phosphorylated in unstimulated
OVCA 433 cells (Fig. 7) and that ET-1 induced significant increases
in its phosphotyrosine content, with an initial peak at 5 min that fell
toward basal values at 30 min. In contrast, EGF had no significant
effect on p125FAX phosphorylation in these cells (data not shown).

ET-1 Induces Phosphorylation and Activation of MAP Kinase.
MAP kinases (or extracellular signal-regulated kinases) are activated
by numerous growth factors and calcium-mobilizing agonists, and
several lines of evidence have suggested their essential role in cell
cycle progression from G4-G, to S (31, 32). ET-1-induced activation
of MAP kinase is readily detectable on immunoblots, where the
phosphorylated form of p42 MAP kinase displays lower electro-
phoretic mobility. As shown in Fig. 84, both EGF (10 ng/ml) and
ET-1 (100 nMm) induced a rapid shift in the mobility of p42 MAP
kinase, and the activation induced by ET-1 was inhibited by BQ 123.
To confirm that the phosphorylation of MAP kinase was accompanied
by increased enzyme activity, we performed immunocomplex kinase
assays using MBP as a substrate. Stimulation of OVCA 433 cells with
either ET-1 or EGF caused enhanced phosphorylation of MBP in
MAP kinase immunoprecipitates (Fig. 8B), demonstrating that MAP
kinase phosphorylation parallels increased enzymatic activity. Pre-
treatment of cells with the ET, receptor antagonist, BQ 123, pre-
vented the stimulation of MBP phosphorylation induced by ET-1,
confirming that the ET, receptor subtype mediates the activation and
phosphorylation of MAP kinase.

DISCUSSION

The downstream signals that mediate growth responses secondary
to activation of GPCRs have been extensively analyzed in normal and
immortalized cells, but have been little explored in human cancer
cells. We have previously shown that ET-1 activates calcium signal-
ing and proliferative responses in ovarian cancer cells. The present
findings demonstrate the induction of immediate early gene expres-
sion in such cells, one of the earliest genomic responses to ET-1 (10).
This transcriptional response, which is an important nuclear signal
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Fig. 7. Kinetics of ET-1-induced p125FAX tyrosine phosphorylation. Quiescent OVCA
433 cells were incubated for the indicated times in the absence or presence of 100 nm
ET-1. Analysis of p125FAX phosphorylation was performed by immunoprecipitation with
anti-FAK polyclonal serum and subsequent immunoblotting by a monoclonal antiphos-
photyrosine antibody.
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Fig. 8. ET-1- and EGF-induced phosphorylation and activation of MAP kinase. A,
OVCA 433 cells were incubated for 5 min with vehicle (C) EGF (10 ng/ml), ET-1 (100
nm). Cells were preincubated with the specific ET , receptor antagonist BQ 123 (1 um) for
10 min before addition of ET-1. Cell lysates were subjected to SDS-PAGE and immu-
noblotted with anti-ERK?2 antibody. The phosphorylated and activated form of p42 MAP
kinase exhibits reduced electrophoretic mobility. B, quiescent OVCA 433 cells were
treated with EGF (10 ng/ml), ET-1 (100 nm), and BQ 123 (1 pm, 10 min of pretreat-
ment) + ET-1 (100 nm) for S min and analyzed for phosphokinase activity using MBP as
substrate, as described in “Materials and Methods.”

regulating the G,-G, transition, is mediated by the ET, receptor. In
the present study, ET-1 was found to stimulate DNA synthesis in
ovarian cancer cells with the same efficacy as EGF, a typical growth
factor, and at maximally effective concentrations its effect was addi-
tive to that of EGF. In contrast with the synergistic effects of ET-1 and
polypeptide growth factors in certain cell types (33), only slight
potentiation between the two hormones was observed on the growth
responses of ovarian cancer cells. ET-1 has been found to potentiate
DNA synthesis in Swiss 3T3 and NRK cells in the presence of EGF
(34), and additive effects were observed on the proliferation of pros-
tate cancer cells (4) and breast stromal cells (8). The mechanisms
underlying the synergism between ET-1 and EGF are not well de-
fined, but presumably depend on interactions between specific com-
ponents of their mitogenic signaling pathways. In the present case, the
predominately additive actions of ET-1 and EGF on thymidine incor-
poration at saturating agonist concentrations reflect the independence
between their individual signaling mechanisms.

Several ligands that bind to GPCRs have been found to utilize
PTX-sensitive G proteins to initiate growth responses in their target
cells (35). However, ET-1 is known to stimulate phospholipase C
activity and calcium signaling via a PTX-insensitive G protein in
several cell types (18, 36, 37). Our data in ovarian cancer cells are
consistent with the rqle of G, or a related PTX-insensitive G protein
in the ET-1-stimulated signal transduction cascade that regulates cell
growth. Previous evidence has implicated PKC in mitogenic signaling
by ET-1 (17, 38-40), but it is unclear whether PKC activation is
sufficient for the proliferative response and whether the requirement
for PKC is unique to GPCR agonists. In OVCA 433 cells, the effects
of inhibition and depletion of PKC provide evidence that PKC is
necessary for ET-1-induced growth responses. However, this was not
the case for EGF, indicating the different requirements of the two
agonists for activation of PKC to induce mitogenesis. Furthermore,

TPA and the cell permeant diacylglycerol analogue, OAG, did not
reproduce the effects of ET-1 on [*H]thymidine incorporation. Thus,
other signals must be required in concert with PKC to mediate
ET-1-induced mitogenesis.

Tyrosine kinases and their phosphorylated substrates are essential
components in the mitogenic actions of numerous growth factors (15,
16). Tyrosine phosphorylation has also been found to occur during
signaling responses associated with cell activation by phospholipase
C-linked mitogenic peptides. The present data reveal a characteristic
pattern of protein tyrosine phosphorylation following cell stimulation
with ET-1. The importance of tyrosine phosphorylation in mitogenic
signaling by ET-1 was indicated by the manner in which two chem-
ically and functionally dissimilar tyrosine kinases inhibitors, herbi-
mycin A and genistein, prevented the stimulation of [*H]thymidine
incorporation by ET-1. It is clear that, in addition to PKC, mitogenic
signaling by ET-1 requires an as yet unidentified tyrosine kinase(s). In
the present study, ET-1 rapidly stimulated tyrosine phosphorylation of
multiple cellular proteins. Among these we identified p125¥X kinase,
which is predominantly localized in focal adhesions and is rapidly
phosphorylated by integrins, neuropeptides, and oncogenes (41). Re-
cent studies have shown that p60°*™ forms a stable association with the
tyrosine-phosphorylated form of p125F4K through its SH2 domain,
suggesting a role for p125¥4¥ in signal transduction (42). Further-
more, increased levels of p125F4* were found to accompany changes
in epithelial and mesenchymal tumors during their progression to an
invasive phenotype (43). The convergence of these various properties
of p125FK suggests that this protein participates in a variety of
cellular processes, including a diverse set of normal and abnormal
functions such as cell adhesion, cell motility, and, ultimately, cell
proliferation.

ET-1 causes phosphorylation and activation of p42 MAP kinase,
which is regulated by an upstream MAP kinase (MEK) that is thought
to serve as a point of convergence of diverse signaling pathways,
including the phospholipase C/PKC cascade and the receptor tyrosine
kinase cascade (32). Activation of PKC and tyrosine kinases has been
implicated in signaling from ET , receptors to MAP kinase in several
cell types including fibroblasts (38, 44), mesangial cells (18, 45),
vascular smooth muscle cells (46), and astrocytes (16, 36, 47). The
present findings are in agreement with these reports and, along with
our previous observations, indicate that ET-1 acts as a tumor growth
factor by activating G protein-mediated signal transduction pathways
in ovarian cancer cells. Binding of ET-1 to the ET, receptor subtype
results in activation of a PTX-insensitive G protein that stimulates
phospholipase C activity and promotes Ca>*/PKC signaling. Further-
more, ET-1 enhances mitogenesis through at least two pathways that
utilize PKC and tyrosine kinases as major downstream effectors. ET-1
also stimulates the tyrosine phosphorylation of p12574¥, which is
thought to transduce signals involved in tumor cell invasion. How-
ever, the role of this tyrosine kinase in mitogenic signal transduction
is not yet known. The activation of MAP kinases by ET-1 is followed
by increases in immediate-early gene expression and mitogenic re-
sponses that typically accompany growth factor activity.

A comparison of mitogenic signaling by ET-1 and EGF suggests
not only the possibility of common intermediates in the signaling
pathways of receptor tyrosine kinases and GPCRs, but also the acti-
vation of yet unidentified tyrosine kinases through cross-talk between
these intracellular signaling cascades. Identification of such putative
tyrosine kinase(s) is an obvious challenge for future studies. Recently,
Daub et al. (48) have demonstrated a role for receptor tyrosine kinases
as downstream mediators in GPCR mitogenic signaling via a ligand-
independent mechanism of EGF receptor transactivation. The present
findings clearly demonstrate that ET-1 is a potent mitogen in ovarian
cancer cells and has additive actions with EGF that do not appear to
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involve receptor transactivation. It is likely that interaction or conver-
gence of diverse mitogenic signaling pathways is necessary for ex-
pression of the mitogenic activity of ET-1. Further investigation of
this issue should clarify the functional relevance of ET-1 and its
receptor in the regulation of cell growth and in the pathophysiology of
ovarian cancer.
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