




lOF-l REGULATION OF VEGF

Fig. 1. VEGF mRNA expression in cells treated
with cytokines or growth factors. Cells were
treated with EOF (50 ng/ml). HOP (50 ng/ml).
IGF-I (100 ng/ml), PD-ECGF (50 ng/ml).
PDGF-BB ( 10 ng/ml). IL-lÃŸ(10 ng/ml), 1L-6 (80
ng/ml). TGF-a (25 ng/ml), TGF-/3 (10 ng/ml).
homhesin (1.5 /ig/ml). or gastrin (20 ng/ml) in
serum-free medium for 24 h. Control cells were
grown under identical conditions but without cy
tokines or growth factors. Studies were performed
in triplicate. Total RNA was extracted from cells,
and Northern blot analyses were performed to de
termine VEGF mRNA expression. GAPDH
mRNA transcripts were used as an internal control
to correct for loading differences. A. representative
Northern blot. IGF-I increased VEGF mRNA ex
pression in HT29 cells >5-fold at 24 h. B. densi-

tometric values. Columns, mean corrected inten
sity of VEGF expression; bars, SE.
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corrcclion for stress induction of VEGF.] In HT29 cells, expression of
VEGF mRNA in cells treated with IGF-I peaked at 24 h, with a
7.3-fold greater increase than in control cells. In SW620 cells, the
peak was at 8 h and was 4.7-fold greater than that in controls (Fig.

2B).
IGF-I Increased VEGF Protein in HT29 and SW620 Cells. To

determine whether the increase in VEGF mRNA expression induced
by IGF-I was associated with an increase in VEGF protein, VEGF

protein levels in cell lysates and supernatants were determined by
ELISA (Fig. 3). IGF-I-treated cells demonstrated an increase in VEGF

protein levels in the cell lysates and supernatants of both cell lines. In
HT29 cell lysate, VEGF protein increased >4-fold at 24 h. In SW620
cell lysate, VEGF protein increased nearly 3-fold at 24 h.

IGF-I Increased VEGF mRNA Expression by an Increase in
Transcriptional Activity. To determine the mechanism for the IGF-I

induction of VEGF, transient transfections were performed with pro
moter-reporter constructs in HT29 cells. Control cells transfected with

pGL3 (plasmid vector alone) and pRLTK demonstrated no increase in
promoter activity (Fig. 4/4). Cells transfected with pGL3-VEGF
(promoter-reporter construct) and pRLTK and treated with CoCl2
(positive control) demonstrated a 9-fold increase in activity. Cells
transfected with pGL3-VEGF and pRLTK and treated with IGF-I
similarly demonstrated a 9-fold increase in activity.

To determine that the mechanism by which IGF-I induced VEGF

mRNA expression occurred at a transcriptional level, transcription
was blocked with ActD in HT29 cells prior to the addition of IGF-I.
IGF-I induction of VEGF mRNA expression was completely abol

ished by the blockade of transcription (Fig. 4B). These data suggest
that IGF-I induction of VEGF is regulated by an increase in transcrip

tion of the gene.
IGF-I Did Not Alter the Stability of VEGF mRNA. To further

explore the mechanism by which IGF-I enhanced the expression of

VEGF mRNA, the stability of VEGF mRNA was investigated by

examining its half-life. The half-life of VEGF mRNA treated with
IGF-I was similar to that of cells not exposed to IGF-I (Fig. 5). Thus,
the half-life of VEGF mRNA was not prolonged by treatment with
IGF-I.

Effect of Antiserum to IGFBP-4 and of Des-(l-3)-IGF-I on
VEGF mRNA Induction. To determine whether IGFBP-4 contrib
utes to the regulation of IGF-I induction of VEGF, expression of

VEGF was examined by incubating HT29 cells in the presence or
absence of antiserum to IGFBP-4. VEGF mRNA expression in cells
treated with antiserum to IGFBP-4 alone was not different from that

in control cells. VEGF mRNA expression in cells treated with both
IGF-I and control antibody (IgG) or with both IGF-I and antiserum to
IGFBP-4 was similarly increased (Fig. 6).

To further determine the effect of IGFBPs on VEGF mRNA ex
pression induced by IGF-I, HT29 cells were incubated with IGF-I or
des-(l-3)-IGF-I, which does not bind to IGFBPs. There was no

difference in VEGF expression at 8 and 24 h in cells treated with
IGF-I or des-(l-3)-IGF-I. These results suggest that IGFBPs do not
significantly affect IGF-I induction of VEGF mRNA expression.

DISCUSSION

Angiogenesis is an essential step in tumor growth and metastasis,
and this process is driven by the balance of positive and negative
effector molecules (45). Several laboratories, including our own, have
demonstrated that microvessel counts are strong prognostic factors in
human colorectal cancer (11, 46, 47). Previous studies demonstrating
that VEGF expression correlates with microvessel count have sug
gested that VEGF is involved in regulating human colon cancer
angiogenesis (11, 46). Other studies have demonstrated the impor
tance of VEGF in the growth and metastasis of human colon cancer;
for example, neutralizing VEGF antibodies given to mice bearing
human colon cancer xenografts decrease tumor growth and inhibit
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Fig. 2. Time course of VEGF mRNA induction by IGF-1. HT29 and SW620 cells were treated with or without IGF-I (100 ng/ml) for the indicated times. Northern blots were

performed after extraction of total RNA from cells (A). For each time point, untreated cells were used as a control. Relative VEGF mRNA expression was determined by Northern
blot analysis as described in "Materials and Methods." To correct for increases in VEGF expression in "control cells" due to stress (serum-free condition), the increased signal intensity

for VEGF mRNA expression in control cells was subtracted from the signal intensity observed in cells treated with IGF-I. The signal intensity for VEGF after this correction was
compared to VEGF mRNA expression in untreated cells at the earliest time point. The final signal intensity of VEGF was expressed as a relative value (cÃÃ//Ãmn.v.ÃŸ).

metastasis formation (17). Thus, it appears that VEGF is a critical
factor in determining the angiogenic phenotype in a majority of
human colon cancers.

Factors that regulate VEGF expression in tumor and nontumor cells
are now being elucidated. The best-characterized mediator that in
duces an increase in VEGF expression is hypoxia (19-21, 48). Hy-
poxia increases VEGF expression within 3-6 h, whereas normaliza

tion of oxygen tension causes cellular VEGF mRNA to return to
baseline levels (48). Hypoxie induction of VEGF may be regulated by
an increase in transcription and/or stabilization of the mRNA (21, 22).

PDGF-BB, EOF, basic fibroblast growth factor, TGF-a, TGF-ÃŸ,
HGF, IL-IÃŸ,IL-6, and other cytokines and growth factors are known

to affect VEGF expression. However, not all of these factors increase
VEGF expression in all tumor systems; i.e., the factors that are
involved in the regulation of VEGF may be dependent upon the tumor
system under study. In addition, it is not clear whether these factors
affect common signal transduction pathways or multiple pathways in
the regulation of VEGF expression. Here, we investigated the effect of
IGF-I on VEGF expression in human colon cancer cell lines. Al

though VEGF is constitutively expressed in nearly all cells, its induc
tion is regulated by specific factors that may be intracellular, extra
cellular, or both. The sites of growth of colon cancer are sites where
IGF-I is indigenous to the microenvironment. The liver, the major

organ of metastasis in patients with colon cancer, harbors levels of

HT29

Fig. 3. VEGF protein level in supematants and
cell lysates of cells incubated with IGF-I. Cells were
treated with or without IGF-I (100 ng/ml) in serum-

free medium for 8 or 24 h after incubation overnight
in serum-free medium. Supematants and cell lysates
were examined for VEGF protein levels by ELISA.
Columns, increase in VEGF protein induced by
IGF-I, represented as a percentage of the VEGF
protein level in untreated cells; bars, SE.

SW620

8 24

Hours after treatment with IGF-I Hours after treatment with IGF-I

Supernatant of cells treated with IGF-I

4011

Cell lysates of cells treated with IGF-I

Research. 
on January 24, 2022. © 1998 American Association for Cancercancerres.aacrjournals.org Downloaded from 

http://cancerres.aacrjournals.org/


lOF-I REGULATION OF VEOF

Control CoCI2 IGF-I

B
ActD (1 ug/ml)

IGF-1 (100ng/ml)

VEGF 4.4kb
3.7kb

GAPDH 1.3kb ^

Fig. 4. IGF-I induction of VEGF transcriplion. A. HT29 cells were cotransfected with
pGL.I-VEGF (â€¢.VEGF promoler-lucifera.se reporter construct) and pRLTK (D. to
control for transfection efficiency). Transfection with pGL3 and pRLTK was performed
as a negative control. Twenty-four h after transient transfection. cells were treated with
IGF-I ( IOOng/ml), CoCU (200 UM: positive control), or medium alone (negative control)
for 24 h. and luciferase activity was determined. Columns, relative promoter activity. B.
HT29 cells were treated with ActD (1 ng/ml) for 2 h to block further transcription. Cells
were then treated with IGF-I for 24 h, and RNA was extracted and Northern blots were
performed. Cells treated with IGF-I but not pretreated with ActD were used as positive

controls.
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Fig. 5. VEGF mRNA half-life studies. HT29 cells were incubated in the presence
(â€”â€¢or absence (- - Q) of IGF-I for 24 h prior to exposure to ActD (5 u.g/ml). Total

RNA was extracted from cells at 0, 0.5, I, 2, 4, or 6 h after the addition of ActD. and
Northern blots were performed to determine VEGF mRNA expression. Relative VEGF
mRNA expression was calculated, and the half-life was determined by plotting represent

ative relative VEGF expression values on a semilogarithmic scale.

VEGF that are 30-fold higher than those of any other organ (28). The
colon mucosa itself synthesizes significant amounts of IGF-I, and
colon cancers also synthesize IGF-I (49, 50).

The role of IGF-I in malignant progression is not clear, but evi
dence suggests that IGF-I plays a role in preventing apoptosis in
numerous tumor cell systems (reviewed in Ref. 51 ). In addition, IGF-I

may play a role in cell proliferation, although this is a subject of
debate (26, 52). The role of IGF-I in malignant growth is, at times,

difficult to define because IGFBPs may modulate the biological

effects of IGF-I. These factors can bind IGF-I and either enhance or

inhibit its ability to bind to its receptor, thus affecting its biological
activity (this is dependent upon the specific IGFBP). IGFBP-4 has

been identified in human colon cancer cell lines, including the HT29
cell line, and may regulate, at least in part, the biological function of
IGF-I (43. 53).

Other investigators have shown that IGF-I increases VEGF expres
sion in a human osteoblast-like cell line (SaOS-2) and in murine

osteoblasts (25). Cells were grown in the presence of various concen
trations of IGF-I for several time periods, and VEGF mRNA and
protein expression was found to increase in a dose-dependent fashion,

with peak expression at 2 h. Further studies demonstrated that this
increase is due to an increase in transcription (25). A more recent
publication has demonstrated that IGF-I increases VEGF expression

in colon carcinoma cell lines (26). This occurs independently of the
ability of IGF-I to increase cellular proliferation. Furthermore,

Punglia and associates (27) have demonstrated that VEGF protein is
increased in retinal pigment epithelial cells after treatment with IGF-I

and that this induction of VEGF occurs primarily through enhanced
transcription of the VEGF gene.

We have shown here that IGF-I increases VEGF mRNA expression

in human colon carcinoma cell lines. Initial studies were performed in
two representative cell lines, HT29 (no ras mutation) and SW620
(ras-mutated cell line), to demonstrate that our findings were not

limited to a single cell line. In addition, we also demonstrated that
VEGF protein levels are increased by IGF-I treatment to show that

changes at the mRNA level translate into changes at the protein level.
Once the above observations were confirmed, we investigated mech
anisms for this induction of VEGF.

In the two human colon cancer cell lines studied, the peak time
point for VEGF mRNA induction by IGF-I varied, with SW620 cells

showing the highest VEGF levels at 8 h and HT29 cells showing the
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Fig. 6. Effect ofIGFBP-4 antibody (IGFBP-4 Ab) and des-(l-3)-IGF-l (des-IGF-1) on
VEGF mRNA expression by IGF-I. A, HT29 cells were incubated in the presence or
absence of IGF-I, IGFBP-4 antibody (IGFBP-4 Ab}, or control rabbit antibody (IgG Ab)
for 24 h. Total RNA was extracted from the cells, and VEGF mRNA expression was
determined by Northern blot analysis. B. HT29 cells were treated with IGF-1 or des-(l-
3)-IGF-I for 8 or 24 h. Total RNA was extracted from the cells, and VEGF mRNA
expression was determined by Northern blot analysis.
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highest expression at 24 h. Investigators examining the role of IGF-I

induction of VEGF in other cell systems have shown levels of VEGF
peaking at time points ranging from as early as 2 h in SaOS-2, retinal

pigment epithelial, and bovine smooth muscle cells to 8 h in another
colorectal cancer cell line (COLO 205; Refs. 25-27). This again

demonstrates that the effect of certain stimuli may affect different cell
lines in distinct ways.

We designed our studies to eliminate the effect of other factors
known to induce VEGF expression. For example, all of our studies
were performed in cells grown to near 100% confluence because we
have previously shown that cell density increases VEGF expression
(40). In addition, we treated cells with IGF-I in serum-free medium to

avoid the effects of other growth factors known to be present in serum.
However, in subsequent studies,4 we have found that IGF-I in serum-

free medium causes a similar increase in VEGF expression. Consis
tently in these studies, we have found that 36 h of growth in serum-

free conditions leads to an increase in VEGF expression. In examining
the effects of various factors on VEGF expression, other investigators
have compared VEGF expression in treated cells to VEGF expression
in cells untreated at time 0 (25, 26). Because of our previous obser
vation that cell density and serum starvation increase VEGF expres
sion, we included, as a control, untreated cells grown for identical
time periods. When comparing cells treated with IGF-I to untreated
cells at the same time period, we observed a 3-5-fbld increase in

VEGF expression. However, when the increase in VEGF expression
due to serum starvation was taken into account, we observed an even
greater increase in VEGF expression, with an expected return to
near-baseline levels after prolonged incubation (Fig. 1).

VEGF induction by IGF-I appears to be regulated by an increase in
the transcription of the VEGF gene. Using VEGF promoter-reporter

constructs, we demonstrated that VEGF promoter activity increases
after treatment with IGF-I. CoCl->, a chemical mimic of hypoxia, was

used as a positive control and induced a similar increase in VEGF
promoter activity. Furthermore, when transcription was blocked with
ActD prior to the addition of IGF-I. the induction of VEGF was

likewise blocked. Very little is known about the transcription factors
that are induced by treatment with IGF-I. It appears that Spl and

another unknown transcription factor, denoted P2. are both necessary
for the increase in transcription due to activation of the IGF response
element (54). Other studies have identified a factor designated YY1 as
a possible transcription factor induced by IGF-I. The binding se

quence for this protein is unknown at present (55). Factors that
down-regulate transcription factor expression through IGF-I signaling
have also been identified. IGF-I regulates c-myc mRNA by causing a
3-5-fold decrease in c-myc expression in human neuroblastoma cells.

Therefore, transcriptional activation of the VEGF gene may include
both positive and negative regulators (56).

The half-life of VEGF mRNA was not significantly affected by
IGF-I treatment. Data on the role of IGF-I in VEGF mRNA stability
are conflicting. Warren et al. (26) demonstrated a 3-fold increase in

VEGF mRNA stability when colon cancer cells were treated with
IGF-I. In human SaOS-2 osteoblast-like cells, however. Goad et al.

(25) found no increase in VEGF mRNA stability after treatment with
IGF-I. Again, these apparently conflicting data may be due to char

acteristics of the specific cell types.
IGFBPs are regulators of IGF-I biological activity. They may act by

sequestering IGF-I or by increasing the availability of IGF-I. There is
also evidence to suggest that IGFBPs function independently of IGF-I.

Therefore, it was necessary for us to determine the role of IGFBPs in
IGF-I induction of VEGF. Because HT29 cells synthesize IGFBP-4 as
the predominant binding protein (43), we examined the effect of IGF-I
on cells treated with or without neutralizing antibodies to IGFBP-4. In
addition, we also used a derivative of IGF-I that is devoid of the first

4013

three NH2-terminal amino acids that bind to IGFBPs but have similar
affinity for the IGF-I receptor (57). In both of these studies, it did not
appear that IGFBPs affected the induction of VEGF by IGF-I.

Our studies demonstrate that IGF-I induces VEGF mRNA and

protein expression in human colon carcinoma cell lines. This increase
in VEGF expression is due to an increase in gene transcription without
a significant effect on mRNA half-life. IGFBPs do not regulate IGF-I
induction of VEGF. IGF-I may play a role in the site-specific regu

lation of angiogenic factors in colon cancer angiogenesis and growth.
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