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Abstract

To investigate the phenotype associated with estrogen receptor � (ER)
expression in breast carcinoma, gene expression profiles of 58 node-
negative breast carcinomas discordant for ER status were determined
using DNA microarray technology. Using artificial neural networks as
well as standard hierarchical clustering techniques, the tumors could be
classified according to ER status, and a list of genes which discriminate
tumors according to ER status was generated. The artificial neural net-
works could accurately predict ER status even when excluding top dis-
criminator genes, including ER itself. By reference to the serial analysis of
gene expression database, we found that only a small proportion of the 100
most important ER discriminator genes were also regulated by estradiol
in MCF-7 cells. The results provide evidence that ER� and ER� tumors
display remarkably different gene-expression phenotypes not solely ex-
plained by differences in estrogen responsiveness.

Introduction

Estrogens are important regulators of growth and differentiation in
the normal mammary gland and are also important in the development
and progression of breast carcinoma. Estrogens regulate gene expres-
sion via ER,3 however the details of the estrogen effect on down-
stream gene targets, the role of cofactors, and cross-talk between other
signaling pathways are far from fully understood. As approximately
two-thirds of all breast cancers are ER� at the time of diagnosis, the
expression of the receptor has important implications for their biology
and therapy (1). Opinions differ as to whether those breast cancers
which lack ER expression at diagnosis arise from an ER� compart-
ment within the mammary epithelium or represent evolution from an
ER� to an ER� state (2).

The cDNA microarray technology allows for parallel analysis of
the expression of thousands of genes (3) to address complex questions
in tumor biology. Statistical tools are required to analyze the large
amount of expression data generated by this methodology. ANNs are
computer-based algorithms for pattern recognition that are capable of
learning from experience (4). The diagnosis of myocardial infarcts (5)
and heart arrhythmias from electrocardiograms (6) are examples of

applications of ANNs in medicine. We have recently demonstrated the
utility of ANNs for the diagnostic classification of tumors using
cDNA microarray data (7). In this study, we have applied ANNs as
well as conventional methods to analyze cDNA microarray data from
a selected group of node-negative breast cancers that differ with
respect to their ER status. Here we report that ER� and ER� tumors
display remarkably different phenotypes, which may be attributable to
their evolution from distinct cell lineages.

Materials and Methods

Tissues and Cells. Fifty-eight grossly dissected primary tumors from node-
negative breast cancer patients, tumor size 20–50 mm, were collected at the
University Hospital, Lund, Sweden. Microscopic examination of touch prep-
arations verified the presence of cancer cells in all samples. To train the
classifier described below, 47 tumors, all from two previous randomized
studies (Ref. 8)4 were selected so that roughly half, 23, were ER� (range,
50–1900 fmol/mg protein; median, 160), whereas the remaining 24 were ER�
(range, 0–9 fmol/mg protein, median 0.7). In addition, 14 of the patients were
premenopausal (5 ER� and 9 ER�) and 33 were postmenopausal (18 ER�
and 15 ER�). To obtain an independent test set, the remaining 11 of the 58
tumors were selected from an ongoing clinical trial and used here as a blinded
test set. Of the 11 blinded samples, 5 were ER� (range, 40–120 fmol/mg
protein; median, 60), 6 were ER� (range, 0–3 fmol/mg protein; median, 1.5),
and all were premenopausal. ER protein determinations were performed using
standard methods in the routine clinical laboratory (9). BT-474 cells, obtained
from American Type Culture Collection, were maintained in RPMI 1640
supplemented by 10% fetal bovine serum, penicillin, and streptomycin. Cells
were harvested at 60–80% confluency and used as a reference in all hybrid-
izations.

RNA Isolation and cDNA Microarrays. Total RNA was isolated from
cell lines using the RNeasy kit (Qiagen, Valencia, CA) with subsequent Trizol
(Life Technologies, Inc., Rockville, MD) purification. Total RNA from tumors
was isolated using two successive rounds of Trizol. Microarrays were prepared
and hybridized as described previously (3, 10, 11) and according to standard
protocols.5 Briefly, the arrays were spotted with 6,728 sequence-verified
cDNA clones, of which �4000 were named human genes and the remaining
clones were expressed sequence tags. BT-474 RNA (200 �g) and 65–100 �g
of tumor RNA were used to produce labeled cDNA by anchored oligo(dT)-
primed reverse transcription using SuperScript II reverse transcriptase (Life
Technologies, Inc.) in the presence of either Cy5-dUTP or Cy3-dUTP (Am-
ersham Pharmacia, Piscataway, NJ), respectively. Fluorescence scanning and
image analysis with DeArray software were performed as described previously
(12, 13).

Data Analysis. For each gene, the fluorescent intensity of the most intense
channel [red (Cy3) or green (Cy5)] for each sample, was averaged over all
samples. All genes for which this average exceeded 2,000 fluorescence units
(scale 0–65,535 units) were included in the analysis. In addition, we required,
for all samples, that the red and green intensities both exceeded 20 fluores-
cence units and that the union (of the two channels) spot area exceeded 30
pixels. For the 58 (47 � 11) measured samples, these requirements left us with
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3,389 of the original 6,728 genes. We used multilayered perceptrons, a class of
ANNs, which are powerful and versatile regression models (4) to predict the
ER status of the tumors from their gene expression patterns and to determine
the genes which were most important for this classification (Fig. 1A). To allow
for a supervised regression model with no “over-training” (because we have a
large number of genes as compared with the number of samples), the dimen-
sionality (3,389) of the samples was reduced by the PCA (14). Thus, each
sample was represented by 58 numbers, which resulted from a projection of the
gene expressions using PCA eigenvectors. The samples were classified in two
categories using a 3-fold cross-validation procedure, as follows. The 47 dis-
closed samples were randomly shuffled and split into three roughly equally
sized groups. An ANN model was then calibrated with 8 or 10 PCA compo-
nents as input variables using two of the groups (training), with the third group
reserved for testing predictions (validation). This procedure was repeated three
times, each time with a different group used for validation. The random
shuffling was redone 200 times, and for each shuffling we analyzed three ANN

models. Thus, in total, each disclosed sample belonged to a validation set 200
times, and 600 ANN models were calibrated. We selected the PCA compo-
nents used as inputs based on the training set. For the ER� and ER�
classification, each ANN model gave an output between 0 (ER�) and 1
(ER�). For each validation sample, the 200 outputs were used as a committee:
the average of all of the outputs (a committee vote) was calculated, and a
validation sample was classified as ER� or ER�, depending on whether its
committee vote was closer to 0 or 1 (the decision threshold was 0.5). All 600
models were used to classify the additional blinded samples. Different choices
of the decision threshold correspond to different balances between the sensi-
tivity and the specificity of the classification. All possible thresholds give rise
to a so-called ROC curve in the (sensitivity, 1 � specificity)-plane. The area
under this curve (ROC area) is a convenient measure of the classification
performance. The sensitivity of the classification to individual genes was
determined by the absolute value of the partial derivative of the output with
respect to the gene expressions, averaged over samples and ANN models. A

Fig. 1. Classification of ER� and ER� tumors using ANNs and gene expression patterns. A, schematic illustration of the ANN models. Filtering of genes for a minimal level of
expression and spot area reduced the number of genes to 3389 (1). PCA further reduced the dimensionality to 10 PCA components/sample (2). The samples were randomly partitioned
into three groups (3). Two of these groups were used for training and one for validation (4) using an ANN model with five hidden nodes and the ER status as the output (5). The training
process was repeated so that all three groups were used for validation (6). The random partition of samples was redone and the training procedure repeated 200 times so that a total
of 600 models were trained (7). By measuring the sensitivity of the classification to a change in the expression level of each gene in the calibrated models, the genes could be ranked
(8). The process (2–7) was repeated using fewer genes (9). The ANN output results from the committee of 600 models, including the SDs, using the top 100 (B) and the top 301–400
(C) discriminator genes. On the X axis, 0 and 1 represent ER� and ER�, respectively, with the decision threshold set at 0.5. The 47 training samples (f) and the 11 test samples (F)
are plotted. Yellow, samples known to be ER� (23 � 6); blue, ER� samples (24 � 5). Sample numbers (labels) are indicated.
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large sensitivity for a gene implies that changing its expression influences the
output significantly. In this way, the genes can be ranked. For comparison with
the ANN method, we also analyzed the data and visualized the differences
between tumors based on ER status using MDS (10), hierarchical clustering
(15), and weighted gene list (16) techniques. To test whether genes which
discriminate ER� from ER� tumors demonstrated a response to E2 in MCF-7
cells (17) at either 3 h or 24 h after E2 treatment, we searched the SAGE
database6 using the xProfiler tool with default settings.

Results

Calibration and Validation of the ANN Models. To calibrate
ANN models to classify the tumor samples, we used the gene expres-
sion data from cDNA microarrays containing 6728 genes (Fig. 1A).
Filtering for a minimal level of expression and spot area reduced the
number of genes to 3389. PCA further reduced the dimensionality,
and we found that using 10 PCA components/sample as inputs, with
one output and five hidden nodes, produced well-calibrated ANN
models. The 3-fold cross-validation procedure (see “Materials and
Methods”) produced a total of 600 ANN models, and the training and
validation was successful. In addition, inspection of the calibration
curves showed that there was no sign of overtraining of the models
(data not shown).

Optimization of Genes Used for Classification Using ANN
Models. We next determined the contribution of each gene to the
classification by the ANN models. This was done by measuring the
sensitivity of the classification to a change in the expression level of
each gene, using the 600 previously calibrated models (see “Materials
and Methods”). In this way, we ranked the genes according to their
significance for the classification. The 100 most important genes were
then extracted and formed the input for another and final calibration.
When using only 100 genes, we found that using eight PCA compo-
nent inputs and four hidden nodes were sufficient. In this way, all 47
samples were correctly classified in the validation phase. The output
of the models generated a number between 0 (ER�) and 1 (ER�),
reflecting the crispness of the classification. A plot of the output
values from the committee is shown for all 47 training samples
(Fig. 1B). The majority of the samples, in both groups, obtain output
values close to either 0 or 1, with small variations between the output
results from the different models. Thus, the committee members agree
in general on the classification of each sample, and the result is a clear
separation between ER� and ER� tumors. The top 50 genes ex-
tracted from the ANN models, which significantly contribute to the
classification, represent a wide spectrum of cellular functions
(Table 1). The ER gene, which, as expected, appears at the top of the
ranked genes, is closely followed by GATA-binding protein 3, a
transcription factor previously associated with ER� tumors (18).

Prediction of ER Status of Blinded Breast Tumor Samples. To
test whether the ANN classifications for ER status were generally
applicable, the calibrated ANN models were also used to predict the
outcome of 11 (5 ER� and 6 ER�) blinded test samples from an
independent data set of early stage primary breast cancers. These
samples were also predicted with 100% accuracy. A plot of the
committee output values, shown in Fig. 1B, displays a clear separation
between the two categories.

Prediction of ER Status when Excluding ER and Other Top
Discriminators. When classifying the samples using the ER gene or
the GATA3 gene alone (without PCA), good classifications were
obtained, indicating that, as expected, these genes carry sufficient
information for successful classifications. An interesting issue is to
what extent ER� and ER� tumors can be separated when not
explicitly including the expression values for ER itself. Repeating the

ANN cross-validation and gene extraction procedure above, but ex-
cluding ER, only 1 ER� sample, 6582, of the 47 samples was
incorrectly classified. Interestingly, when using this calibration while
masking the data for ER, again all 11 blinded test samples were
correctly classified. Thus, a successful prediction does not occur for
the trivial reason that ER mRNA expression is related to ER protein
levels. These results led us to examine how far down on the discrim-
inator list we could find genes carrying enough information for an
accurate prediction. To test this we performed a series of classifica-
tions using different sets of 100 genes, starting from the top of the
discriminator list by excluding the top 50 genes and following this by
the stepwise exclusion of 50 additional genes for every classification
(i.e., excluding the top 50, 100, 150 . . . to 300 genes, respectively).
The number of correctly classified samples and the ROC area for the
predictions of both the 47 tumors in the validation set as well as for
the 11 blinded test tumors were extracted (Table 2). Although the
success of the predictions declined when using genes lower down on
the discriminator list, the network performance was still fairly good.
This was demonstrated as the 100 genes in positions 301 to 400 on the
discriminator list achieved ROC areas of 93.7% and 96.7% for the
validation set and the test set, respectively. However, the committee
votes for these samples are now closer to the threshold value 0.5 and
also display an increased variance (Fig. 1C), indicating that the
classification is less stable and conclusive than when using the top 100
genes. Still, the results clearly demonstrate that the classification is
not only controlled by a few very strong discriminator genes, but
results from a far more complex expression pattern involving a
substantial number of genes.

MDS and Hierarchical Clustering. We used two standard clus-
tering techniques to illustrate further the differences, found by the
ANN models, in gene expression profiles between the two tumor
categories. An MDS plot was created displaying the position of each
tumor sample in a three-dimensional Euclidean space, with the dis-
tance between the samples reflecting their approximate degree of
correlation (Fig. 2A). This MDS clustering was based on a WGA (16)
that generated a set of 113 genes that showed significantly differen-
tiated expression levels between the two tumor categories. There was
an �50% overlap between the 100 most important discriminatory
genes derived from WGA analysis and the ANN models, indicating
that a substantial number of important discriminatory genes are re-
vealed independent of the choice of analytical method. As can be seen
from the MDS plot, the two categories (ER� and ER�) are well
separated, with the exception of one ER� tumor, 6582, which clusters
with the ER� tumors. This separation, consistent with the ANN
analysis above, was confirmed additionally by hierarchical clustering
of the 47 tumors and the 113 genes from the WGA (Fig. 2B), which
organized the 47 tumor samples along the horizontal axis and created
a dendrogram based on their similarities in gene expression profiles.
The clustering organized all of the tumors into two separate dendro-
gram branches corresponding to ER� and ER� tumors with the
exception of two ER� tumors, 6582 and 5955.

E2-Responsive Genes in the MCF-7 Cell Line. To examine the
relationship between ER function and the genes discriminating ER�
and ER� tumors, we compared our results with SAGE gene expres-
sion data reported for E2 stimulated MCF-7 cells7 (17). By reference
to this data, 61 of the top 100 ER-discriminating genes uncovered by
ANN analysis were represented by SAGE tags. Of these, only four
genes (CCND1, STC2, SLC7A5, and KRT18) were regulated by E2 in
MCF-7 cells, and one of these (KRT18, ranked 59 in the ANN
sensitivity list) was regulated in a direction discordant with its relative

6 Internet address: http://www.ncbi.nlm.nih.gov/SAGE/sagexpsetup.cgi. 7 Internet address: http://sciencepark.mdanderson.org/ggeg.
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expression in the tumor specimens (Table 1). This result suggests that
the difference in gene expression profile between ER� and ER�
tumors can only in part be explained by the activity of a functional ER
pathway in ER� tumors.

Discussion

To characterize in more detail the phenotypic characteristics of
ER� and ER� breast cancers, the expression of 6728 genes was
investigated in primary tumor tissues from 58 breast cancer patients.
Gene expression profiles of breast tumors have been investigated
previously (19–21) but not in a tumor set suited to specifically study
the ER� and ER� classification problem. Here we have identified a
homogenous group of node-negative breast cancers, 20–50 mm in

diameter, of which about one-half (28) were ER�, whereas the
remaining 30 were ER�. We then classified the samples using ANN
models. Compared with the majority of other methods used, our
approach has the advantage that it takes nonlinear dependencies in the
data into account. In addition, because we were interested in classi-
fying two well-known cancer types, rather than discovering new
classes, a supervised approach was optimal. The ANN models were
successfully trained to recognize gene expression patterns generated
by cDNA microarray analysis, inasmuch as they accurately classified
both the 47 training samples and the 11 blinded test samples (Fig. 1B)
using only 100 of the genes most important for the classification. Of
note, the microarray analyses of the blinded test samples were per-
formed separately using a different scanner and batch of microarray

Table 1 Top 50 genes extracted from ANNs

Ranka
Relative

expressionb Gene symbol Gene description SAGEc Clone ID no.

1�0
�0 � ESR1 Estrogen receptor 1 NS 725321

2�0
�2 � TFF3 Trefoil factor 3 (intestinal) NT 298417

3�1
�1 � GATA3 GATA-binding protein 3 NS 214068

4�2
�0 � ESTs NS 132140

5�0
�4 � S100A8 S100 calcium-binding protein A8 (calgranulin A) NT 562729

6�1
�4 � LCN2 Lipocalin 2 (oncogene 24p3) NS 741497

7�2
�3 � ESTs NT 155072

8�3
�2 � CDH3 Cadherin 3, type 1, P-cadherin (placental) NT 773301

9�4
�2 � P28 Dynein, axonemal, light intermediate polypeptide NT 782688

10�4
�3 � PFKP Phosphofructokinase, platelet NS 26184

11�2
�5 � LAD1 Ladinin 1 NS 121551

12�2
�6 � KCNN4 Potassium intermediate/small conductance calcium-activated channel,

subfamily N, member 4
NS 756708

13�3
�8 � SFRS5 Splicing factor, arginine/serine-rich 5 NT 143169

14�3
�8 � IGFBP2 Insulin-like growth factor binding protein 2 (36kD) NS 233721

15�4
�7 � HSPC195 ESTs NS 139354

16�5
�6 � COX6C Cytochrome c oxidase subunit VIc NS 838568

17�5
�7 � PFKP Phosphofructokinase, platelet NS 950682

18�6
�7 � FBP1 Fructose-1,6-bisphosphatase 1 NS 433253

19�6
�7 � EGFR Epidermal growth factor receptor (avian erythroblastic leukemia viral (v-

erb-b) oncogene homolog)
NS 324861

20�7
�6 � CRIP1 Cysteine-rich protein 1 (intestinal) NS 1323448

21�8
�6 � STC2 Stanniocalcin 2 � 130057

22�8
�5 � SCYD1 Small inducible cytokine subfamily D (Cys-X3-Cys), member 1

(fractalkine, neurotactin)
NT 140574

23�6
�6 � GALNT3 UDP-N-acetyl-�-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 3 (GalNAc-T3)
NT 148225

24�7
�5 � KRT7 Keratin 7 NS 843321

25�7
�5 � LMO4 LIM domain only 4 NS 162533

26�7
�7 � TIMP3 Tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy,

pseudoinflammatory)
NS 768370

27�6
�6 � CCND1 Cyclin D1 (PRAD1: parathyroid adenomatosis 1) � 841641

28�5
�13 � ATDC Ataxia-telangiectasia group D-associated protein NT 377275

29�6
�12 � ABP/ZF Alu-binding protein with zinc finger domain NT 417424

30�5
�14 � IGF2 Insulin-like growth factor 2 (somatomedin A) NT 207274

31�5
�13 � IGHG3 Immunoglobulin heavy constant � 3 (Gm marker) NT 855745

32�6
�12 � PIB5PA Phosphatidylinositol (4,5) bisphosphate 5-phosphatase, A NT 1359579

33�7
�13 � ARHH Ras homolog gene family, member H NS 302591

34�6
�15 � MSE55 Serum constituent protein NS 214982

35�7
�14 � SLC9A3R1 Solute carrier family 9 (sodium/hydrogen exchanger), isoform 3

regulatory factor 1
NS 773286

36�8
�13 � EIF3S4 Eukaryotic translation initiation factor 3, subunit 4 (�, 44kD) NS 857319

37�9
�12 � SOD3 Superoxide dismutase 3, extracellular NT 795309

38�10
�11 � SLC7A5 Solute carrier family 7 (cationic amino acid transporter, y� system),

member 5
� 755578

39�11
�10 � NDRG1 N-myc downstream regulated NT 842863

40�12
�13 � S100P S100 calcium-binding protein P NS 135221

41�13
�14 � THBS1 Thrombospondin 1 NT 810512

42�12
�14 � IMPA2 Inositol(myo)-1(or 4)-monophosphatase 2 NS 32299

43�13
�13 � CHI3L1 Chitinase 3-like 1 (cartilage glycoprotein-39) NT 770212

44�14
�13 � SERPINI1 Serine (or cysteine) proteinase inhibitor, clade I (neuroserpin), member 1 NT 564621

45�12
�14 � HMGIY High-mobility group (nonhistone chromosomal) protein isoforms I and Y NS 782811

46�13
�14 � APOD Apolipoprotein D NS 838611

47�13
�16 � PVALB Parvalbumin NT 430318

48�14
�16 � A2M �-2-macroglobulin NT 878182

49�15
�16 � SELENBP1 Selenium binding protein 1 NS 80338

50�10
�27 � FABP7 Fatty acid binding protein 7, brain NS 345626

a The genes are ranked according to the sensitivity analysis (see “Materials and Methods”). The sensitivity is calculated averaged over all 600 ANN models. The errors for a rank
are calculated from the SD of the sensitivities for the 600 ANN models.

b �, higher expression in ER�; �, higher expression in ER�. Defined as the sign of the ANN sensitivity.
c NT, no tag; NS, not significant; �, up-regulated by E2; �, down-regulated by E2.
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slides from those used for training, indicating the robustness of the
methods involved, with regard to both measurements and analysis.
Standard clustering algorithms such as MDS and hierarchical cluster-
ing showed similar results (Fig. 2), strengthening the conclusion based
on ANN models that ER� and ER� tumors exhibit distinct patterns
of gene expression. We achieved our best classification results using
the ANN models, demonstrating the potential to obtain improved
results with nonlinear classification methods. This is also important
for the extraction of relevant genes, because a nonlinear method may
extract important genes that cannot be found by linear methods.
However, this relatively small data set does not allow for a rigorous
comparison of methods.

In addition to the accurate classification of disclosed as well as
blinded samples based on the top 100 discriminatory genes, we found
that a fairly good classification could be accomplished using lower-
ranked genes. Although the reliability of the classification declined
when using genes farther down on the list, the results indicate that
information that contributes to the classification is carried by genes
deep on this list. This is consistent with the gene expression profiles
of ER� and ER� tumors differing in a complex way, indicating the
existence of two phenotypically very distinct groups of tumors. The
ER status of breast tumors has been suggested to either reflect tumor
progression with ER� tumors evolving from ER� precursors, or to
indicate a distinct origin from different types of epithelial cells in the
mammary gland. Metastases from ER� tumors may be ER� (22)
supporting the former view. On the other hand, ER� tumors have
been suggested to exhibit the phenotype of luminal epithelial cells,
whereas ER� tumors resemble myoepithelial (basal) cells (19). Re-
cently, it has been proposed that myoepithelial cells derive from
self-renewing luminal cell precursors, an observation which might
explain the predominant luminal phenotype of breast cancers (23).
Several of the ER status-discriminator genes are relevant to mammary
gland histology. For example, we found that P-cadherin, characteristic
of myoepithelial cells (24), was more highly expressed in ER�
tumors. The correlation between the expression of P-cadherin and
ER-negativity in tumors has been observed previously (25). The
transcription factor C/EBP �, which has been suggested to control the
cell-fate decision in the mammary gland (26), is more highly ex-
pressed in ER� tumors. Of interest, C/EPB �-null mice have a defect
in lobuloalveolar development and an abnormally high proportion of
cells expressing the progesterone receptor (27). We also identified
lipocalin 2 as a gene associated with ER� tumors, consistent with a
previous report (28). Another gene expressed more highly in ER�
tumors, ladinin, though not previously studied in breast cancer, is a
basement-membrane protein that may well be associated with the
basal/myoepithelial compartment (29). Perou et al. (19) emphasized
varying patterns of cytokeratin expression in breast cancer, and our
results are consistent with that report, to the extent that the arrays used
in these studies overlapped.

Several genes previously associated with ER positivity or a ductal/

Fig. 2. Clustering of gene expression data from ER� and ER� tumors. Blue, ER�
tumors; yellow, ER�. MDS (A) displays the position of each tumor sample in a three-
dimensional Euclidean space, with the distance between the samples reflecting their
approximate degree of correlation. Hierarchical clustering (B) presents the clustered
samples in columns and the clustered genes in rows. A pseudocolored representation of
gene expression ratios is shown, with the scale below. The genes in the cluster, which
included the ER gene, are denoted. The 113 genes used for the two clustering methods
were generated by WGA.

Table 2 Prediction of ER status

Genes

Validation Test

Correcta ROC area Correctb ROC area

Top–100 47 100.00% 11 100.00%
51–150 43 97.80% 9 100.00%

101–200 45 99.30% 11 100.00%
151–250 44 97.50% 9 100.00%
201–300 41 93.70% 11 100.00%
251–350 39 95.30% 9 93.30%
301–400 41 93.10% 8 96.70%
Random 38.8 � 0.2 91.8 � 0.2% 5.5 � 0.2 53.0 � 2.6%
a Number of correct classifications of 47 samples.
b Number of correct classifications of 11 samples.
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luminal localization were also identified as more highly expressed in
this group of tumors. Among these were not only GATA3, but also
TFF3, belonging to the same family of trefoil factors as pS2, a gene
whose expression is regulated by ER. Although TFF3 was not present
in the SAGE data, its induction by estrogen has been reported previ-
ously in MCF-7 cells (30). Cyclin D1, a gene that is strongly associ-
ated with ER expression in breast cancer in this and other studies (31),
is strongly induced by E2 in MCF7. Carbonic anhydrase XII has very
recently been localized to the ductal epithelium where it may promote
tumor invasion by modifying the extracellular pH (32). It is striking,
though, that only a few genes on our discriminator list are E2-
responsive in cell culture. This observation is consistent with the
unique patterns of gene expression being largely explained on the
basis of cell lineage, with a component of the ER� pattern resulting
from the function of an ER signaling pathway. In addition, the in vitro
response of a single cell line to E2 may not faithfully reproduce the
physiological effects of ER signaling in vivo, and the role of genes
regulated by the progesterone receptor remains to be explored.

In conclusion, we have found that ER� and ER� tumors display
very different gene expression phenotypes. From examining expres-
sion patterns alone, we cannot establish whether the ER� and ER�
phenotypes reflect tumorigenesis from populations which diverged
during normal differentiation or represent a phenotypic interconver-
sion during tumorigenesis. Notably, only a small proportion of cells in
the normal mammary epithelium express ER (33), in sharp contrast to
the high proportion of ER� tumors. The underlying biology of the
mammary epithelium is complex and the distinct cellular compart-
ments, which give rise to cancers, are not fully defined. The mecha-
nisms, which regulate these distinct gene expression programs, remain
to be investigated, and are of importance for future breast cancer
research.
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Nordenskjöld, B., and Rydén, S. Results of two or five years of adjuvant tamoxifen
correlated to steroid receptor and S-phase levels. Breast Cancer Res. Treat., 59:
69–76, 2000.

10. Khan, J., Simon, R., Bittner, M., Chen, Y., Leighton, S. B., Pohida, T., Smith, P. D.,
Jiang, Y., Gooden, G. C., Trent, J. M., and Meltzer, P. S. Gene expression profiling
of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res., 58: 5009–
5013, 1998.

11. DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen,
Y., Su, Y. A., and Trent, J. M. Use of a cDNA microarray to analyse gene expression
patterns in human cancer. Nat. Genet., 14: 457–460, 1996.

12. Khan, J., Bittner, M. L., Chen, Y., Meltzer, P. S., and Trent, J. M. DNA microarray
technology: the anticipated impact on the study of human disease. Biochim. Biophys.
Acta, 1423: M17–M28, 1999.

13. Chen, Y., Dougherty, E. R., and Bittner, M. L. Ratio-based decisions and the
quantitative analysis of cDNA microarray images. Biomed. Optics, 2: 364–374,
1997.

14. Jollife, I. T. Principal Component Analysis. New York: Springer-Verlag New York,
Inc., 1986.

15. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. Cluster analysis and
display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95: 14863–
14868, 1998.

16. Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher,
M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E.,
Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J.,
Gillanders, E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D., and
Sondak, V. Molecular classification of cutaneous malignant melanoma by gene
expression profiling. Nature (Lond.)., 406: 536 –540, 2000.

17. Charpentier, A. H., Bednarek, A. K., Daniel, R. L., Hawkins, K. A., Laflin, K. J.,
Gaddis, S., MacLeod, M. C., and Aldaz, C. M. Effects of estrogen on global gene
expression: identification of novel targets of estrogen action. Cancer Res., 60:
5977–5983, 2000.

18. Yang, G. P., Ross, D. T., Kuang, W. W., Brown, P. O., and Weigel, R. J. Combining
SSH and cDNA microarrays for rapid identification of differentially expressed genes.
Nucleic Acids Res., 27: 1517–1523, 1999.

19. Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A.,
Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov,
A., Williams, C., Zhu, S. X., Lonning, P. E., Borresen-Dale, A. L., Brown, P. O., and
Botstein, D. Molecular portraits of human breast tumours. Nature (Lond.), 406:
747–752, 2000.

20. Martin, K. J., Kritzman, B. M., Price, L. M., Koh, B., Kwan, C. P., Zhang, X.,
Mackay, A., O’Hare, M. J., Kaelin, C. M., Mutter, G. L., Pardee, A. B., and Sager,
R. Linking gene expression patterns to therapeutic groups in breast cancer. Cancer
Res., 60: 2232–2238, 2000.

21. Bertucci, F., Houlgatte, R., Benziane, A., Granjeaud, S., Adelaide, J., Tagett, R.,
Loriod, B., Jacquemier, J., Viens, P., Jordan, B., Birnbaum, D., and Nguyen, C. Gene
expression profiling of primary breast carcinomas using arrays of candidate genes.
Hum. Mol. Genet., 9: 2981–2991, 2000.

22. Kuukasjarvi, T., Kononen, J., Helin, H., Holli, K., and Isola, J. Loss of estrogen
receptor in recurrent breast cancer is associated with poor response to endocrine
therapy. J. Clin. Oncol., 14: 2584–2589, 1996.

23. Pechoux, C., Gudjonsson, T., Ronnov-Jessen, L., Bissell, M. J., and Petersen, O. W.
Human mammary luminal epithelial cells contain progenitors to myoepithelial cells.
Dev. Biol., 206: 88–99, 1999.

24. Palacios, J., Benito, N., Pizarro, A., Suarez, A., Espada, J., Cano, A., and Gamallo, C.
Anomalous expression of P-cadherin in breast carcinoma. Correlation with E-
cadherin expression and pathological features. Am. J. Pathol., 146: 605–612, 1995.

25. Peralta Soler, A., Knudsen, K. A., Salazar, H., Han, A. C., and Keshgegian, A. A.
P-cadherin expression in breast carcinoma indicates poor survival. Cancer (Phila.),
86: 1263–1272, 1999.

26. Seagroves, T. N., Lydon, J. P., Hovey, R. C., Vonderhaar, B. K., and Rosen, J. M.
C/EBP� (CCAAT/enhancer binding protein) controls cell fate determination during
mammary gland development. Mol. Endocrinol., 14: 359–368, 2000.

27. Seagroves, T. N., Krnacik, S., Raught, B., Gay, J., Burgess-Beusse, B., Darlington,
G. J., and Rosen, J. M. C/EBP�, but not C/EBP�, is essential for ductal morphogen-
esis, lobuloalveolar proliferation, and functional differentiation in the mouse mam-
mary gland. Genes Dev., 12: 1917–1928, 1998.

28. Stoesz, S. P., Friedl, A., Haag, J. D., Lindstrom, M. J., Clark, G. M., and Gould, M. N.
Heterogeneous expression of the lipocalin NGAL in primary breast cancers. Int. J.
Cancer, 79: 565–572, 1998.

29. Marinkovich, M. P., Taylor, T. B., Keene, D. R., Burgeson, R. E., and Zone, J. J.
LAD-1, the linear IgA bullous dermatosis autoantigen, is a novel 120-kDa anchoring
filament protein synthesized by epidermal cells. J. Investig. Dermatol., 106: 734–738,
1996.

30. May, F. E., and Westley, B. R. Expression of human intestinal trefoil factor in
malignant cells and its regulation by oestrogen in breast cancer cells. J. Pathol., 182:
404–413, 1997.

31. Courjal, F., Louason, G., Speiser, P., Katsaros, D., Zeillinger, R., and Theillet, C.
Cyclin gene amplification and overexpression in breast and ovarian cancers: evidence
for the selection of cyclin D1 in breast and cyclin E in ovarian tumors. Int. J. Cancer,
69: 247–253, 1996.

32. Ivanov, S., Liao, S. Y., Ivanova, A., Danilkovitch-Miagkova, A., Tarasova, N.,
Weirich, G., Merrill, M. J., Proescholdt, M. A., Oldfield, E. H., Lee, J., Zavada, J.,
Waheed, A., Sly, W., Lerman, M. I., and Stanbridge, E. J. Expression of hypoxia-
inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am. J.
Pathol., 158: 905–919, 2001.

33. Petersen, O. W., Hoyer, P. E., and van Deurs, B. Frequency and distribution of
estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer
Res., 47: 5748–5751, 1987.

5984

ER STATUS AND ASSOCIATED GENE EXPRESSION PATTERNS

Research. 
on March 5, 2021. © 2001 American Association for Cancercancerres.aacrjournals.org Downloaded from 

http://cancerres.aacrjournals.org/


2001;61:5979-5984. Cancer Res 
  
Sofia Gruvberger, Markus Ringnér, Yidong Chen, et al. 
  
Remarkably Distinct Gene Expression Patterns
Estrogen Receptor Status in Breast Cancer Is Associated with

  
Updated version

  
 http://cancerres.aacrjournals.org/content/61/16/5979

Access the most recent version of this article at:

  
  

  
  

  
Cited articles

  
 http://cancerres.aacrjournals.org/content/61/16/5979.full#ref-list-1

This article cites 29 articles, 9 of which you can access for free at:

  
Citing articles

  
 http://cancerres.aacrjournals.org/content/61/16/5979.full#related-urls

This article has been cited by 85 HighWire-hosted articles. Access the articles at:

  
  

  
E-mail alerts  related to this article or journal.Sign up to receive free email-alerts

  
Subscriptions

Reprints and 

  
.pubs@aacr.orgDepartment at

To order reprints of this article or to subscribe to the journal, contact the AACR Publications

  
Permissions

  
Rightslink site. 
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC)

.http://cancerres.aacrjournals.org/content/61/16/5979
To request permission to re-use all or part of this article, use this link

Research. 
on March 5, 2021. © 2001 American Association for Cancercancerres.aacrjournals.org Downloaded from 

http://cancerres.aacrjournals.org/content/61/16/5979
http://cancerres.aacrjournals.org/content/61/16/5979.full#ref-list-1
http://cancerres.aacrjournals.org/content/61/16/5979.full#related-urls
http://cancerres.aacrjournals.org/cgi/alerts
mailto:pubs@aacr.org
http://cancerres.aacrjournals.org/content/61/16/5979
http://cancerres.aacrjournals.org/

