Cyclin B1 Is a Critical Target of RhoB in the Cell Suicide Program Triggered by Farnesyl Transferase Inhibition

Uma Kamasani,1 Minzhou Huang,1 James B. DuHadaway,1 Edward V. Prochownik,2 P. Scott Donover,1 and George C. Prendergast1,3

1Lankenau Institute for Medical Research, Wynnewood Pennsylvania; 2Children’s Hospital of Pittsburgh, Section of Hematology/Oncology, Pittsburgh, Pennsylvania; and 3Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania

INTRODUCTION

Cell suicide processes are thought to play an important role in limiting cancer progression and therapeutic response. Although great progress has been made in identifying the basic mechanisms of apoptosis, much less is known about transformation-specific mechanisms of apoptosis that may relate more directly to cancer pathophysiology. Insights in this area may increase understanding of the pathophysiological roots of cancer progression as well as identify better responders by coinhibition of Cdk1 activity.

ABSTRACT

Farnesyl transferase inhibitors (FTIs) have displayed limited efficacy in clinical trials, possibly because of their relatively limited cytotoxic effects against most human cancer cells. Therefore, efforts to leverage the clinical utility of FTIs may benefit from learning how these agents elicit p53-independent apoptosis in mouse models of cancer. Knockout mouse studies have established that gain of the geranylgeranylated isoform of the small GTPase RhoB is essential for FTI to trigger apoptosis. Here we demonstrate that Cyclin B1 is a crucial target for suppression by RhoB in this death program. Steady-state levels of Cyclin B1 and its associated kinase Cdk1 were suppressed in a RhoB-dependent manner in cells fated to undergo FTI-induced apoptosis. These events were not derivative of cell cycle arrest, because they did not occur in cells fated to undergo FTI-induced growth inhibition. Mechanistic investigations indicated that RhoB mediated transcriptional suppression but also accumulation of Cyclin B1 in the cytosol at early times after FTI treatment, at a time before the subsequent reduction in steady-state protein levels. Enforcing Cyclin B1 expression attenuated apoptosis but not growth inhibition triggered by FTI. Moreover, enforcing Cyclin B1 abolished FTI antitumor activity in graft assays. These findings suggest that Cyclin B1 suppression is a critical step in the mechanism by which FTI triggers apoptosis and robust antitumor efficacy. Our findings suggest that Cyclin B1 suppression may predict favorable clinical responses to FTI, based on cytotoxic susceptibility, and they suggest a rational strategy to address FTI nonresponders by coinhibition of Cdk1 activity.

MATERIALS AND METHODS

Cell Culture. The generation and culture of mouse embryonic fibroblasts (MEFs) transformed by adenosivirus E1A and mutant H-Ras has been described previously (5, 11). E1A+Ras-transformed MEF cell populations that are heterozygous or nullizygous for RhoB are termed ER +/+ or ER −/− cells, respectively (5). Heterozygous cells, which exhibit similar biological properties to homozygous wild-type cells (5, 11), are matched to nullizygous cells to control for the presence of the neomycin resistance cassette used for rhoB gene replacement (11). The specific FTI inhibitor L-744,832 (13) was added to cell cultures to a final concentration of 10 μmol/L when indicated. In some experiments, the structurally distinct peptidomimetic FTI inhibitors B581 or FTI-277 were used at the same concentration. Generation and culture of the rat intestinal epithelial (RIE) cell line transformed by an oncogenic V12 mutant of K-Ras, termed RIE/K-ras, has been described previously (8). MMEC/myc is a c-myc-transformed mouse mammary epithelial cell line (myc83 cells) that was established from an autochthonous mammary gland tumor arising in a mouse mammary tumor virus (MMTV)-c-myc transgenic mouse (20, 21). MMEC/myc cells were cultured in Richter’s Medium (IMEM) supplemented with 2.5% fetal calf serum (FCS; HyClone, Logan, UT), 10 ng/mL human epidermal growth factor (Invitrogen, Carlsbad, CA), 5 μg/mL insulin (Life Technologies, Inc., Rockville, MD), and penicillin/streptomycin (Life Technologies, Inc.). Ectopic expression of Cyclin B1 was achieved in ER +/+ cells by liposome-
mediated transfection of a full-length human cyclin B1 cDNA vector that has been described previously (22). Briefly, cells were seeded at 5 × 10^5 cells per well in a 6-well dish and were transfected the next day with 3 μg of the cyclin B1 or empty pBabe(puro) vectors. After 48 hours, cells were passed into 100-mm dishes, were treated the following day with 1 μg/mL puromycin, and were expanded into mass culture for analysis. Cell populations were screened by PCR to confirm stable integration of the cyclin B1 vector and by Western analysis to confirm elevated expression of Cyclin B1 protein. To attenuate expression of endogenous Cyclin B1, ER+/− cells were transfected stably with an RNA interference (RNAi) vector modified to include a puromycin resistance cassette and the following hairpin cyclin B1 targeting sequence defined as suppressive levels of expression of Cyclin B1 protein in transient 293 cell transfection assays. Briefly, the primers CATGGAGAGCTCCATGAGTGTAATTTTGGCCGAAGCTTGGGCTAACATGATCTTATGGAGCTCTCCATGC in mouse cyclin B1 (bases 957 to 985) or rat cyclin B1 (bases 936 to 964) message, sequence GGCCAAATACCTCATGGAGCTCTCCATGC in mouse lysis in 1 mL of DMEM. Palpable tumors appeared at the injection site within 1 week and visible nodules of suppressivity was produced by the structurally distinct FTIs (Promega, Madison, WI) or the cyclin B1 promoter-reporter pGL2-cycB1-luc (22) and 0, 0.5, 1, 1.5, or 1.8 μg of the HA epitope-tagged RhoB or RhoA vectors or the corresponding no-insert control vectors that have been described previously (7, 8, 27). The total quantity of DNA in each transfection was normalized to 2 μg of DNA with empty vector corresponding to the different RhoB vectors used (7–9, 27). Cells were harvested 48 hours after transfection and were processed with a commercial kit (Dual Light System, cat. no. BD100LP, Applied Biosystems, Foster City, CA) and a fluorescence luminometer (Analytical Luminescence Laboratory, San Diego, CA).

RESULTS

Suppression of Cyclin B1 by FTI Is Linked to Gain of RhoB-GG and Apoptotic Cell Fate. Cyclin B1 expression is restricted normally to G2-M phase by a complex set of regulatory events (28). This tight control is profoundly disrupted during malignant development, as illustrated by aberrant expression patterns of Cyclin B1, including during G2 phase in cancer cells (29). Given the central role of Cyclin B1 in cell cycle control and cell survival, and its profound disruption in transformed cells, one would expect the alteration of Cyclin B1 to mediate alterations in the physiology of transformed cells. This gene was identified previously as a target for suppression by RhoB in E1A+Ras-transformed cells that were fated to undergo FTI-induced apoptosis (17). This regulatory connection was selective to transformed cells, because it was not seen in normal cells. Therefore, we explored its potential significance in E1A+Ras-transformed cells that were heterozygous or homozygous null for rboB (termed ER+/− or ER−/− cells), with the potent and specific FTI L-744,832 to induce growth inhibition or apoptosis under normal-culture conditions or serum-deprived conditions, respectively, as described previously (5).

FTI caused a rapid and specific reduction in steady-state levels of cyclin B1 in a manner that was associated with the induction of RhoB-GG and apoptotic fate (Fig. 1A). This response was specific insofar as Cyclin D1 and Cyclin A (which are required for transit through G2-S phase, and S-phase/G2 phases of the cell cycle, respectively) were not affected by FTI treatment. Furthermore, cyclin B1 was not suppressed under normal-culture conditions in which FTI treatment caused growth inhibition but not apoptosis (24, 25). This response was not compound-specific because the same pattern of cyclin B1 suppression was produced by the structurally distinct FTIs B581 and FTI-277 (Fig. 1B). Under the same conditions, FTI treatment also reduced steady-state expression of Cdk1, the cell cycle
kinase that is specifically bound and activated by Cyclin B1 (Fig. 1C). The basis for Cdk1 loss was unclear, but it suggested a mechanism that focused on the Cyclin B1/Cdk1 complex. The specific reduction in Cyclin B1 and Cdk1 was not derivative of cell death, because Cyclin D1 and Cyclin A were not affected and because the kinetics of Cyclin B1/Cdk1 reduction preceded the kinetics of poly(ADP-ribos) polymerase (PARP) cleavage, an indicator of caspase-3 activation during the execution phase of apoptosis (Fig. 1D).

Cyclin B1 responded similarly to FTI in other cell systems in which neoplastic transformation was driven by FTI-insensitive oncoproteins. RIE/K-ras is an RIE rat intestinal epithelial cell line transformed by the activated K-Ras mutant K-RasG12V (8). FTI does not inactivate K-Ras, because this protein is geranylgeranylated in drug-treated cells (30). Nevertheless, despite the failure to block K-Ras prenylation, FTI strongly inhibits the proliferation of RIE/K-ras cells in serum-containing media, an effect that is associated with RhoB-GG induction and that can be phenocopied by ectopic expression RhoB-GG (8). In the absence of serum growth factors, we observed that FTI triggers apoptosis of RIE/K-ras cells, consistent with similar observations in other K-Ras-transformed cells (24). As before, apoptotic fate was associated with specific suppression of Cyclin B1 (Fig. 2A). A similar pattern was also observed in an epithelial cell system in which transformation was driven by c-Myc, which does not use Ras pathways to transform cells. MMEC/myc (also known as myc83) is a c-myc-transformed mouse mammary epithelial cell line that derived from in vitro establishment of an autochthonous MMTV-c-myc tumor (20, 21). MMEC/myc cells responded to FTI by growth inhibition unless cells were deprived of substratum adhesion (by culturing cells on the nonadherent substrate polyHEMA; 23). Cyclin B1 was suppressed by FTI only under conditions of adhesion deprived that led to cell death (Fig. 2B). Taken together, these observations extended the evidence that Cyclin B1 suppression was associated with apoptotic fate in settings in which Ras inhibition by FTI was irrelevant. In summary, suppression of Cyclin B1 by FTI was not a MEF-specific response, was not associated with the execution phase of cell death, and was not associated with a cell cycle arrest derivative of FTI-induced growth inhibition. We concluded that RhoB specifically mediated suppression of Cyclin B1 in cells fated to undergo FTI-induced cell death.

RhoB Mediates Inhibition of the Cyclin B1 Promoter by FTI

The identification of cyclin B1 in gene microarray studies suggested that RhoB acted in part by affecting mRNA stability or promoter activity. RhoB was not observed to affect steady-state levels of Cyclin B1 protein driven from an exogenous promoter, which argues against the notion that mRNA stability was targeted (data not shown). In contrast, RhoB inhibited transcription from the cyclin B1 promoter as measured by a luciferase reporter plasmid (22). We studied this effect in ER−/− cells in which it was possible to analyze the properties of various transfected isoforms of ectopic RhoB on the cyclin B1 promoter.

RhoB inhibited the activity of the cyclin B1 promoter in a dose-dependent manner (Fig. 3A). This effect was not phenocopied by the related but functionally distinct RhoA protein, which activated the cyclin B1 promoter (Fig. 3B). Consistent with the notion that RhoB mediated FTI action at this promoter, FTI had little effect unless RhoB was expressed ectopically (Fig. 3C). Moreover, an engineered RhoB-GG isoform (9) was sufficient to phenocopy the inhibition elicited by wild-type RhoB plus FTI (Fig. 3C). The requirement for an active Rho B molecule was illustrated by the inability of the CaaX mutant RhoB-C186C (27) to suppress the cyclin B1 promoter. This observation reinforced the conclusion that the ability of FTI to inhibit Cyclin B1 expression was causally connected to the ability of FTI to elicit the geranylgeranylated isoform of RhoB in cells.

A panel of six effector domain mutations with known interaction properties (8) was used to address the question as to whether the pattern of effector interactions differed from those associated with growth inhibition by RhoB-GG [which map significantly to interactions with protein kinase C-related kinase (PRK) (8)]. No single mutant completely relieved the ability of RhoB-GG to inhibit the cyclin B1 promoter, suggesting that multiple interactions were needed to mediate full inhibition. However, the activity pattern differed markedly from that seen for growth inhibition (8). In particular, the T37Y and E40T mutants suggested a role for kinectin, a Rho effector protein that binds the microtubule motor kinesin (Fig. 5D). T37Y is a mutant that abolishes interactions with all Rho effector molecules except kinesin (31), and this mutant was even more active than wild-type RhoB-GG. In contrast, E40T, which abolishes interactions with kinesin but not with other Rho effector molecules (31), relieved inhibition by RhoB-GG more strongly than any other mutant. Taken together, these results supported the interpretation that RhoB mediated the ability of FTI to suppress Cyclin B1 at a transcriptional level, by a mechanism(s) distinct from that used to cause growth inhibition.
Cytosolic Accumulation of Cyclin B1 Precedes Suppression of Protein Levels and Apoptosis. RhoB has a specific physiologic function in signal trafficking as illustrated by its role in trafficking of the epidermal growth factor receptor (EGFR) and Akt (32, 33). Mistrafficking of these proteins that is elicited by FTI is associated with induction of RhoB-GG and altered protein turnover. Therefore, although Cyclin B1 had been highlighted by gene microarray analysis, we were interested in learning whether RhoB might influence its trafficking in transformed cells. As mentioned above, although Cyclin B1 is restricted to G2-M phase in normal cells, its regulation is profoundly disrupted in neoplastic cells, in which inappropriate nuclear expression of Cyclin B1 can be observed broadly in the cell cycle including in G phase (e.g., see refs. 29, 34). E1A+Ras-transformed cells have been used widely as a cancer model, and consistent with the human cancer cell studies, we observed widespread constitutive nuclear expression of Cyclin B1 in unsynchronized cell populations (see below and Discussion).

To assess the effects of RhoB on the localization of Cyclin B1, we used indirect immunofluorescence to examine the status of Cyclin B1 in ER +/– and ER –/– cells treated 8 hours with FTI under conditions in which cell fate was directed to either growth inhibition or apoptosis (Fig. 4). This time point was early in the FTI response, within the time that RhoB-GG was induced but before any reduction occurred in the steady-state levels of Cyclin B1 (Fig. 4A) or induction of the effector phase of apoptosis (Fig. 4B). Two observations were made. First, we observed widespread and robust nuclear expression of Cyclin B1 throughout the unsynchronized ER cell population, regardless of rhabdomyosarcoma genotype, arguing that E1A+Ras transformation profoundly disrupted the normal regulation of Cyclin B1. Second, we observed that FTI-induced a punctate cytosolic accumulation of Cyclin B1 in cells fated to undergo apoptosis (Fig. 4C). This event was not associated with growth inhibition, because Cyclin B1 did not relocalize in cells fated to undergo growth inhibition. Moreover, it depended on the ability of FTI to elicit RhoB-GG because relocalization did not occur in ER –/– cells in which RhoB-GG could not be induced. The change in Cyclin B1 localization could conceivably occur in one of two ways, either by imposing a block to nuclear import or by potentiating nuclear export. Nuclear export of Cyclin B1 is mediated by a CRM1-dependent mechanism (35). However, we found that the CRM1 inhibitor leptomycin B1 did not prevent relocalization of Cyclin B1 in ER +/– cells (data not shown), suggesting that cytosolic accumulation occurred as a result of a block to nuclear import. We concluded that, at early times after FTI treatment, RhoB impaired the nuclear accumulation of Cyclin B1 in cells that were fated to undergo apoptosis.

Enforcing Cyclin B1 Expression Limits RhoB-Dependent Apoptosis Triggered by FTI. We reasoned that if cyclin B1 suppression was essential for FTI-induced apoptosis, then overexpressing cyclin B1 to combat its down-regulation might reduce apoptotic susceptibility of ER +/– cells. Conversely, we reasoned that reducing cyclin B1 expression would elevate the sensitivity of ER –/– cells to FTI-induced apoptosis. To test these predictions, we compared the FTI response in ER +/– cells in which Cyclin B1 was augmented by ectopic expression, and in ER –/– cells in which Cyclin B1 levels were reduced by an RNAi strategy. As a control for apoptosis suppression, we overexpressed the antiapoptotic protein Bcl-xL in ER +/– cells.

Using a human cyclin B1 vector (22), we achieved a several-fold increase in steady-state levels of Cyclin B1 protein in ER +/– cells (Fig. 5). FTI treatment of these cells (ER +/– cyclin B1 cells) still led to a reduction in steady-state levels of Cyclin B1, but only to the level of expression that was characteristic of untreated vector control cells (ER +/– vect cells). This observation was consistent with evidence that RhoB affected Cyclin B1 at more than a transcriptional level (as suggested by the microarray analysis). From a functional standpoint, the ER +/– cyclin B1 cells were acceptable to test our hypothesis, because the steady-state level of Cyclin B1 in FTI-treated cells persisted to levels that were similar to those found in untreated ER +/– vector cells. An effect of exogenous Cyclin B1 was also reflected on steady-state levels of Cdk1 and phosphorylated (active) Cdk1, which were elevated in ER +/– cyclin B1 cells toward the levels of untreated control cells (Fig. 5A). We noted that Bcl-xL also elevated the level of endogenous cyclin B1 and Cdk1, hinting at some level of cross-talk in this system that was mechanistically undefined.

Overexpressed Cyclin B1 specifically inhibited the apoptotic response of ER +/– cells to FTI treatment. Under normal culture conditions,
of cyclin B1 for cell survival (36); and the instability of cell populations expressing the siRNA reinforced the expectation that abolishing Cyclin B1 would be highly deleterious to cell survival. In summary, we concluded that Cyclin B1 suppression was essential for the RhoB-mediated program of apoptosis triggered by FTI.

Cyclin B1 Overexpression Blunts the Antitumor Efficacy of Farnesyl Transferase Inhibition. Apoptosis plays a major role in the ability of FTI to block tumor growth by ER cells (5); therefore, one might predict ER +/−cycB1 cells to exhibit FTI resistance in vivo. To examine this prediction, we compared the FTI response of cells grown as tumor grafts in immunodeficient nude mice. ER +/− or ER +/−cycB1 cells (107) were injected into the opposite thighs of the same animal to control for nonspecific environmental effects. On the basis of the marked response of control ER +/−cells to FTI in previous studies (5), five mice in each group were treated in this manner. Palpable tumors formed in each animal within several days of injection. One week after the graft was initiated, mice were assigned randomly to control or drug treatment groups, the latter of which was dosed once daily for 14 days by intraperitoneal injection with 40 mg/kg L-744,832 as described previously (5, 13). Control mice were given vehicle carrier only. Tumor volumes were calculated at various times during the experiment from caliper measurements as described previously (5). ER +/−cycB1 cells grew markedly more slowly in nude mice than did ER +/−vector cells (Fig. 6A), which exhibited growth kinetics similar to parental ER +/−cells (5). The effect of ectopic Cyclin B1 was unexpected given the lack of any discernable effect on in vitro proliferation. Nevertheless, in contrast to ER +/−vector tumors, which were strongly inhibited by drug treatment, the ER +/−cycB1 tumors were completely resistant to FTI (Fig. 6A). The germane effect of Cyclin B1 on the in vivo response to FTI treatment was apparent when the data were internally normalized to control for the growth effect of Cyclin B1 (Fig. 6B). We concluded that the suppression of Cyclin B1 mediated by RhoB was critical for FTI efficacy in this system.
This study identifies Cyclin B1 as a critical proapoptotic target of RhoB in the response of transformed cells to FTI treatment. Cyclin B1 was not affected under conditions of growth inhibition but was linked specifically to apoptotic induction. The earliest changes exhibited by Cyclin B1 occurred within 8 hours of FTI treatment, after induction of cell death. The notion that Cyclin B1 is required for cell survival is well supported by genetic studies in the mouse (36). By elucidating a specific and essential component of the apoptotic program triggered by FTI, this study advances understanding how signaling molecules are trafficked under stressful conditions, including those present in transformed cells. Thus, RhoB may influence susceptibility to proapoptotic stimuli by influencing how signaling molecules are trafficked under stressful conditions (e.g., “trafficking to survive” versus “trafficking to trash”). In support of the concept that signal trafficking may influence apoptotic susceptibility, another study has defined an essential role for Bin1/Amphiphysin2 [a BAR adapter-encoding gene implicated in vesicle trafficking processes and cancer suppression (40–45)] in FTI-induced apoptosis (46). The present work develops the model that altered-signal trafficking can alter apoptotic susceptibility to FTI. If selection against proapoptotic trafficking processes occurs during malignant

DISCUSSION

This study identifies Cyclin B1 as a critical proapoptotic target of RhoB in the response of transformed cells to FTI treatment. Cyclin B1 was not affected under conditions of growth inhibition but was linked specifically to apoptotic induction. The earliest changes exhibited by Cyclin B1 occurred within 8 hours of FTI treatment, after induction of RhoB-GG but long before induction of cell death. The notion that Cyclin B1 is required for cell survival is well supported by genetic studies in the mouse (36). By elucidating a specific and essential component of the apoptotic program triggered by FTI, this study addresses the question of how cytotoxic versus cytostatic responses to FTI may be determined. Efforts to address this question are important, because they may promote efforts to learn why FTI is not cytotoxic or efficacious to human cancers and to learn how to leverage the utility of these well-tolerated agents in the clinic. Our results argue that suppressing Cyclin B1 is critical to antitumor activity, in support of other evidence that apoptosis is critical to in vivo antitumor efficacy (5, 14, 16). In the one study that has reported FTI effects on cyclin B1 in human cancer cells, it was found that growth inhibition was associated with high Cyclin B1/Cdk1 activity, which is consistent with our observations (19). By establishing a causal link between Cyclin B1 suppression and apoptosis, this study advances understanding of how FTI triggers transformation-selective apoptosis via RhoB-GG. The connection between FTI and Cyclin B1 suppression is important because it may help uncover potential defects in a pathway that is responsible for attenuating the cytotoxicity and efficacy of FTIs in human cancers.

RhoB localizes to plasma and to vesicular and nuclear membranes, and it has a physiologic function in controlling intracellular trafficking processes (6, 33, 37–39). Knockout mouse studies show that RhoB is dispensable for murine development but that it has a critical role in stress-signaling processes and cancer suppression (2). Existing members of the RhoB “traffickome” include the EGFR and the survival kinase Akt, two important regulators of neoplastic cell growth and survival (32, 33). The findings of this study suggest that trafficking of Cyclin B1 may also be subjected to control by RhoB under certain stress conditions, including those present in transformed cells. Thus, RhoB may influence susceptibility to proapoptotic stimuli by influencing how signaling molecules are trafficked under stressful conditions (e.g., “trafficking to survive” versus “trafficking to trash”). In support of the concept that signal trafficking may influence apoptotic susceptibility, another study has defined an essential role for Bin1/Amphiphysin2 [a BAR adapter-encoding gene implicated in vesicle trafficking processes and cancer suppression (40–45)] in FTI-induced apoptosis (46). The present work develops the model that altered-signal trafficking can alter apoptotic susceptibility to FTI. If selection against proapoptotic trafficking processes occurs during malignant

Fig. 5. Enforcing Cyclin B1 blocks apoptosis but not growth inhibition by FTI. A, transgene expression in ER+/−cell populations. Cells expressing ectopic Cyclin B1 (cycB1) or Bcl-xL (bcl-xL) or that contained only vector sequences (vect) were cultured 18 hours in medium containing 0.1% fetal bovine serum before 18-hour treatment with FTI (+) or vehicle only (−). Cell extracts were prepared and examined by Western analysis with antibodies to Cyclin B1 (p-Cdk1) or that contained only vector sequences (vect) or FTI (+FTI), and colonies were photographed 2 weeks later. B, lack of effect on anchorage-independent growth by FTI. Cells (10⁶) were seeded in soft agar culture containing vehicle (Control) or FTI (+FTI), and colonies were photographed 2 weeks later. C, inhibition of apoptosis triggered by FTI. After seeding in normal growth medium, cells were fed with medium containing 0.1% fetal bovine serum and, 18 hours later, were treated an additional 24 hours with FTI (+FTI) or vehicle (Control) before photomicrography and processing for TUNEL reaction and flow cytometry. (N.D., not determined.) M1 gate quantifies apoptosis by TUNEL.

Fig. 6. Enforcing Cyclin B1 abolishes FTI antitumor activity. A, tumor growth curve. Cells (10⁶) were injected subcutaneously into nude mice, and tumor volume was determined by caliper measurements at times afterward (n = 5). B, relative effect of FTI on tumor growth at 2 weeks. The data were internally normalized to each cell line to control for the apparent growth effect of Cyclin B1 (cycB1) on tumor growth. Error bars, SD of the data. (vect, vector.)
development, as it does for proapoptotic signaling processes, then such events may be expected to modify the resistance of human cancer cells to FTI-induced apoptosis.

Gaps in understanding Cyclin B1 control in cancer cells complicate the interpretation of our findings. In particular, emerging evidence suggests that mechanisms that normally restrict nuclear accumulation of Cyclin B1 to G2-M phase are profoundly disrupted in human cancer cells (29, 34). Nuclear accumulation of Cyclin B1 documented in G1 phase in cancer cells (29) would be expected to elicit premature mitosis and cell death in normal cells, suggesting radical differences in not only the regulation but also the function of Cyclin B1 in cancer cells. E1A+Ras-transformed cells have been used widely to model cancer; and, consistent with human cell studies, we observed widespread constitutive nuclear expression of Cyclin B1 in our E1A/Ras-transformed murine fibroblasts. The significance and basis of these observations are unclear at present, but they highlight the gaps in knowledge that persist about Cyclin B1 control, which is not generally well elucidated, even in normal cells. Although a possible role for cyclin B1 can be entertained in mediating RhoB-dependent cell deaths that occur in noncancer settings, it remains the case that one cannot fully interpret the present findings without gaining greater understanding of the basis and significance of the aberrant control of Cyclin B1 in neoplastic cells.

Despite this situation, it is possible to illustrate how our findings advance FTI studies. First, the Cyclin B1 response can be exploited further to elucidate the mechanistic linkage between RhoB and FTI-induced apoptosis. For example, a potential effector role for kinectin dovoets with the accepted signal-trafficking function of RhoB, because kinectin acts to anchor the microtubule motor protein kinesin to membranes and to facilitate vesicle movement (47). Kinectin is dispensable for normal development and physiology in the mouse, but its role in stress processes or cancer has not been explored (48). If kinectin is essential for Cyclin B1 control by RhoB, then defects in kinectin structure or expression in cancer may attenuate the ability of RhoB-GG to mediate apoptosis. If such defects are selected during tumor progression, they may inherently compromise FTI cytotoxicity. In summary, although kinectin has not been validated as a relevant effector molecule, the discussion above illustrates how learning about effectors can yield new clues to cancer pathophysiology and mechanisms of FTI cytotoxicity and resistance. Another use of the findings is the potential for Cyclin B1 to predict favorable versus unfavorable FTI responses in the clinic based on cytotoxic susceptibility. To date, clinical experience suggests that breast cancers and leukemias are among the most likely to respond favorably to FTI (49). Cyclin B1 has been reported to be profoundly dysregulated in these cancers, perhaps making them more susceptible to FTI cytotoxicity (29, 34). Given that overexpressed Cyclin B1 can limit FTI-induced apoptosis, an additional implication is that FTI cytotoxicity and clinical response might be enhanced by combination with a Cdk1 inhibitor. Indeed, generalized Cdk inhibitors have been reported to cooperate with FTI to trigger cell death in human cancer cells (50). Additional studies of Cyclin B1 in the FTI response of human cancer cells would seem warranted, given its potential to serve as a marker to help triage patients, predict responses, and address nonresponders in clinic.

ACKNOWLEDGMENTS

We thank members of our laboratory for constructive criticism. We kindly acknowledge D. Ramljak and R. B. Dickson (Georgetown University, Washington, DC) for providing MMEC/myc myc83 cells and G. V. Hannon (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) for providing the RNA interference vector pShag-1.

REFERENCES

Cyclin B1 Is a Critical Target of RhoB in the Cell Suicide Program Triggered by Farnesyl Transferase Inhibition

Uma Kamasani, Minzhou Huang, James B. DuHadaway, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/22/8389

Cited articles
This article cites 47 articles, 28 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/22/8389.full#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/64/22/8389.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/64/22/8389.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.