Identification of Soluble NH₂-Terminal Fragment of Glypican-3 as a Serological Marker for Early-Stage Hepatocellular Carcinoma

Yoshitaka Hippo,1 Kiyotaka Watanabe,4 Akira Watanabe,1 Yutaka Midorikawa,5 Shogo Yamamoto,2 Sigeo Ihara,2 Susumu Tokita,7 Hiroko Iwamari,1 Yukio Ito,7 Kiyotaka Nakano,6 Jun-ichi Nezu,7 Hiroyuki Tsunoda,6 Takeshi Yoshino,6 Iwao Ohizumi,6 Masayuki Tsuchiya,6 Shin Ohnishi,4 Masatoshi Makuuchi,3 Takao Hamakubo,3 Tatsuhiko Kodama,3 and Hiroyuki Aburatani1

1Genome Science Division, 2Division of Dynamical Bioinformatics, and 3Division of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; Departments of 4Gastroenterology and 5Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; 6Chugai Pharmaceutical Co., Ltd., Shizuoka, Japan; and 7Perseus Proteomics, Inc., Tokyo, Japan

ABSTRACT

For detection of hepatocellular carcinoma (HCC) in patients with liver cirrhosis, serum α-fetoprotein has been widely used, but its sensitivity has not been satisfactory, especially in small, well-differentiated HCC, and complementary serum marker has been clinically required. Glypican-3 (GPC3), a heparan sulfate proteoglycan anchored to the plasma membrane, is a good candidate marker of HCC because it is an oncofetal protein overexpressed in HCC at both the mRNA and protein levels. In this study, we demonstrated that its NH₂-terminal portion (soluble GPC3 (sGPC3)) is cleaved between Arg⁴⁸⁸ and Ser⁴⁸⁹ of GPC3 and that sGPC3 can be specifically detected in the sera of patients with HCC. Serum levels of sGPC3 were 4.84 ± 8.91 ng/ml in HCC, significantly higher than those seen in liver cirrhosis (1.09 ± 0.74 ng/ml; P < 0.01) and healthy controls (0.65 ± 0.32 ng/ml; P < 0.001). In well- or moderately-differentiated HCC, sGPC3 was superior to α-fetoprotein in sensitivity, and a combination measurement of both markers improved overall sensitivity from 50% to 72%. These results indicate that sGPC3 is a novel serological marker essential for the early detection of HCC.

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide, and its incidence is still increasing (1). Because HCC develops from cirrhotic liver after chronic infection with hepatitis virus B or C, patients with liver cirrhosis (LC) are advised to undergo periodical screening of serum α-fetoprotein (AFP) levels and liver ultrasound for the purpose of early detection of cancer (2). AFP is a glycoprotein expressed abundantly in fetal liver but not in normal adult liver and is re-expressed by HCC as it dedifferentiates from a premalignant lesion in the cirrhotic liver through well-differentiated (WD) and moderately differentiated (MD) HCC to poorly differentiated HCC (3). AFP has been used as a serum marker of HCC for more than 40 years. However, ultrasound imaging has been more effective lately in early detection of small WD HCC, in which AFP has yet to be elevated (4), highlighting the clinical need for novel sensitive serum markers for WD HCC.

Many previous studies have identified genes up-regulated in HCC compared with surrounding noncancerous lesions using differential display or cDNA subtraction (5–8). Recently, microarray studies on HCC presented gene lists containing a number of overexpressed genes (9–14). However, to determine whether a gene is a good candidate as a serological marker of WD HCC, it is crucial to determine the following: (a) whether it is overexpressed in WD HCC; (b) whether it is not expressed abundantly in other normal organs; and (c) whether it is detectable in the serum.

Overexpression of GPC3 mRNA in HCC has been reported by ourselves and several other groups (15–18). Moreover, frequency of GPC3 mRNA overexpression was significantly higher than that of elevated serum level and mRNA level of AFP in small HCC (16). We also observed frequent overexpression of GPC3 in WD HCC compared with AFP with microarray analysis.8 Together with minimal expression in normal organs (16, 19), GPC3 has, undoubtedly, previously existed as an attractive candidate marker of HCC. We showed previously using a monoclonal antibody (mAb) that GPC3 protein is also highly expressed in HCC (15). In this study, we further characterized GPC3 protein using a panel of newly generated mAbs and investigated whether it could be detected specifically in the sera of the patients with HCC. Finally, we successfully established a detection system for the soluble fragment of GPC3 (sGPC3) and confirmed its usefulness as a novel biomarker for HCC.

MATERIALS AND METHODS

Serum Samples. Serum samples were collected at Tokyo University Hospital with informed consent from 69 patients with HCC and 38 patients with LC, defined according to the following criteria: patients with a pathological diagnosis of HCC after surgery or with evidence of tumor stain on computed tomography or angiography were diagnosed with HCC; and patients diagnosed with LC were limited to those who had no history of HCC and no ultrasound evidence of tumor for more than 6 months from the day of serum collection.

Purification of Recombinant GPC3 Proteins. For protein expression, we used modified pCXN vector that contained dihydrofolate reductase expression unit as a selection marker. Original pCXN vector (20) was generously provided by J. Miyazaki (Osaka University Medical School, Osaka, Japan). An expression vector for GPC3 that lacks the COOH-terminal hydrophobic glycosylated phosphatidylinositol (PPI)-anchoring domain, GPC3ΔGPI, was constructed by introducing cDNA corresponding to amino acid residues 1–563 of GPC3 into introducing cDNA corresponding to amino acid residues 1–563 of GPC3 into modified pCXN with a FLAG tag added at the COOH terminus. An expression vector for GPC3ΔGPI without heparan sulfate, GPC3ΔGPIΔHS, was constructed by changing Ser⁴⁹⁵ and Ser⁴⁹⁶ to Ala to abolish the heparan sulfate attachment site. These constructs were stably transfected into Chinese hamster ovary cells deficient in the dihydrofolate reductase gene. Culture media containing GPC3ΔGPI-FLAG or GPC3ΔGPIΔHS-FLAG recombinant proteins were collected and loaded to DEAE ion-exchange chromatography DEAE Sepharose FF (Amersham Bioscience, Tokyo, Japan). After washing, eluted protein solutions were applied to anti-FLAG M2 antibody beads (Sigma, St.

Received 7/19/03; revised 11/25/03; accepted 1/12/04.

Grant support: Grants-in-Aid for Scientific Research (B) 12557051 and 13218019 and Scientific Research on Priority Areas (C) 12217031 from the Ministry of Education, Culture, Sports, Science and Technology; Health and Labor Sciences Research Grants for Research on Hepatitis and BSE from the Ministry of Health and Labor; and funds from Uehara Memorial Foundation (H. Aburatani). This study was carried out as a part of The Technology Development for Analysis of Protein Expression and Interaction in Biosciences on R&D of New Industrial Science and Technology Frontiers that was overseen by the Industrial Science, Technology and Environmental Policy Bureau, Ministry of Economy, Trade and Industry and delegated to New Energy Development Organization.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: Hiroyuki Aburatani, Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. Phone: 81-3-5452-5235; Fax: 81-3-5452-5355; E-mail: haburata-tky@umin.ac.jp.

8 Y. Midorikawa, S. Tsutsumi, K. Nishimura, N. Kamimura, M. Kano, H. Sakamoto, M. Makuchi, and H. Aburatani. Transcriptional Signature in Progression of Hepatocellular Carcinoma, manuscript in preparation.

2418
Generation of Anti-GPC3 mAbs. We used recombinant GPC3ΔGPI as an immunogen. Spleen cells were isolated and fused with mouse myeloma P3-X63Ag8.653 (American Type Culture Collection, Manassas, VA). Hybridomas were selected by ELISA against the purified recombinant GPC3ΔGPI/ΔHS-FLAG, followed by cloning with limited dilution. Three mouse mAbs (A1836A, M18D04, and M19B11) were used in this study. For epitope mapping of these mAbs, a pGEX-5X (Amersham Biosciences) construct for the NH2-terminal portion of GPC3 (amino acids 25–358) was expressed in Escherichia coli BL21 Codon Plus (DE3) pLys (Stratagene, La Jolla, CA) as a glutathione S-transferase-fusion protein and subject to immunoblotting analysis.

Immunoblotting. Total cell lysates were obtained after lysis in 10 mM Tris (pH 7.4), 150 mM NaCl, 5 mM EDTA, 1.0% Triton X-100, 1.0% sodium deoxycholate, and 0.1% SDS with protease inhibitor mixture (Sigma). Culture supernatant was obtained from serum-free medium used for cultivation of hepatoma cells. Proteins were separated with 12% SDS-PAGE and transferred to polyvinylidene difluoride Hybond P membrane (Amersham Biosciences). The membrane was treated with 2% nonfat milk in TBS containing 0.05% Tween 20 (TBST) followed by incubation with anti-GPC3 mAb in TBST and subsequent incubation with horseradish peroxidase-conjugated secondary antibody (dilution, 1:5000; Amersham Biosciences) in TBST. The protein was visualized using the enhanced chemiluminescence plus detection system (Amersham Biosciences).

Immunoprecipitation. We first prepared antibody beads by covalently linking 25 μl of protein G-Sepharose (Amersham Biosciences) and 50 μg of anti-GPC3 mAb M18D04 or M19B11 with 20 μm dimethyl pimelimidate (ICN Aurora, Aurora, OH). They were added 50 μl of sera from the patients or culture media of HuH7 cells diluted in 250 μl with PBS to 25 μl of antibody beads and incubated them for 2 h at 4°C. After extensive washing with PBS, antibody beads were boiled for 5 min in 50 μl of SDS-PAGE loading buffer containing 10% -mercaptoethanol, and subsequently, immunoblotting was performed.

Sandwich ELISA. One μg of anti-GPC3 mAb A1836A per well was immobilized to 96-well plate Maxisorp (Nalge Nunc International, Roskilde, Denmark) and stabilized with Immunopassay Stabilizer (Advanced Biotechnologies, Inc., Columbia, MD). Twenty-five μl of sera or standard were diluted with 100 μl of buffer containing 20% normal rabbit serum (Pel-Freez Biologicals, Rogers, AR), 1% BSA (Oriental Yeast Co., Ltd., Osaka, Japan), and 2% mouse ascites Hyb-3423 (Institute of Immunology, Tokyo, Japan) in 50 mM Tris-Cl (pH 8.0), 0.15 M NaCl, and 1 mM EDTA and incubated at room temperature for 2 h. After washing, 25 μl of biotinylated antibody solution containing anti-GPC3 mAbs M18D04 (1.88 μg/ml) and M19B11 (3.75 μg/ml) and 100 μl of horseradish peroxidase-labeled streptavidin (Vector Laboratories Inc., Burlingame, CA) were added to the plate and incubated twice at room temperature for 30 min. TMB Soluble Reagent and Stop Buffer (Sey Tek Laboratories Inc., Logan, UT) were added as substrate, and absorbance at 450 nm was read with EIA Reader (Corona Electric Co., Ltd., Ibaraki, Japan). Recombinant GPC3ΔGPI was used as a standard sample in each assay.

Amino Acid Sequence Analysis. Recombinant GPC3ΔGPI and GPC3ΔGPI/ΔHS were purified and separated by SDS-PAGE and transferred to polyvinylidene difluoride membrane ProBlott (Applied Biosystems, Foster City, CA). The membrane was stained with CBB R-250, and sections containing bands of M, 40,000 and M, 30,000 were cut out separately. These polyvinylidene difluoride membrane sections were washed with a solution including 50% acetonitrile and 0.1% trifluoroacetic acid and applied to an ABI 492 Protein Sequencer (Applied Biosystems) to sequence the NH2 terminus of the protein. Because the NH2 terminus of the M, 40,000 protein was blocked, the membrane was further incubated in acetate with 0.6 mg/ml 3-bromo-3-methyl-2-nitrophenyl-mecapto-3H-indole (ICN Biomedicals Inc., Irvine, CA) at 80°C for 1 h in the dark to chemically cleave the protein at the COOH terminus of tryptophan residues. After washing twice with 80% acetate and once with 10% methanol, the peptide was analyzed using an ABI 492 Protein Sequencer. The detected sequence was aligned using FASTS software available online, and the protein was identified.

RESULTS

The NH2-Terminal Portion of GPC3 Is Cleaved between Arg358 and Ser359 in Vitro. We have previously generated mAb K6534 raised against a peptide corresponding to amino acids 355–371 of GPC3 protein, and we demonstrated, for the first time, overexpression of its core protein in HCC with immunoblotting using this antibody (15). Another antibody is required to construct a sandwich ELISA system for serum examination of GPC3, so we started generating high-affinity mAbs using recombinant GPC3ΔGPI as an immunogen. While purifying the immunogen from the culture supernatant of Chinese hamster ovary cells, we observed a M, 40,000 band that corresponds to core protein of GPC3 as observed with K6534 (15). Because the NH2 terminus of this M, 40,000 band was modified, as revealed by initial amino acid sequencing, we performed sequencing of internal amino acids of the band after cleavage at the COOH terminus of tryptophan residues to verify its origin. We detected six cycles of three amino acid residues VRY, EPX, YES, ITY, LPX, and QSV, each cycle corresponding to the first to sixth residue following tryptophan (W), respectively. After alignment with FASTF algorithm, these sequences matched with the (W)VPETPV (amino acid 51–57), (W)YCSCYQ (amino acid 261–267), and (W)REYILS (amino acid...
296–302) partial sequences of GPC3, respectively, indicating that this band is derived from an NH₂-terminal portion of GPC3. We designated this soluble cleaved fragment of GPC3 as sGPC3.

To further characterize sGPC3, we next tried to precisely identify the undetermined cleavage site by sequencing the residual COOH-terminal portion of GPC3 (designated cGPC3). However, the corresponding band was not visible by SDS-PAGE, presumably due to attachment of heparan sulfate glycosaminoglycan, leading to smearing (Fig. 1A). After substituting the two heparan sulfate attachment sites of the expression construct and purifying the resultant GPC3ΔGPIΔHS, we could observe a band of Mr 30,000, as expected (Fig. 1A). The NH₂-terminal sequence of this band was identified as SAYYPEDLF, identical to amino acids 359–367 of GPC3. Thus, the cleavage site was identified as being between Arg 358 and Ser 359 (Fig. 1A). We do not have precise information on the NH₂-terminal sequence of sGPC3 due to modification, but considering that amino acid 1–24 is a putative signal sequence, sGPC3 is likely to consist of amino acids 25–358 with an estimated molecular weight of 38,100, consistent with the Mr 40,000 band observed in SDS-PAGE (Fig. 1A).

Soluble GPC3 Is a Major Form of GPC3 Specifically Detected in the Sera of Patients with HCC. We succeeded in generating a number of high-affinity mAbs specific for GPC3 and classified these antibodies into two groups, N-mAbs and C-mAbs, according to their epitopes within amino acids 25–358 or 359–563, respectively (data not shown). These antibodies could also recognize endogenous GPC3 protein in immunoblotting: core protein (Mr 66,000) and glycanated form (smearing) of GPC3 were detected by both N-mAbs and C-mAbs; whereas sGPC3 (Mr 40,000) was detected only by N-mAbs (Fig. 2A). An additional Mr 50,000 band was detected strongly in the cell lysate of HepG2 with both N-mAbs and C-mAbs (Fig. 2A). This band was only weakly detectable in HuH6 cells and was undetectable in five other hepatoma cell lines (Fig. 2, A and C; data not shown), suggesting cell-specific variations in the processing of the protein. In the culture supernatant, sGPC3, rather than a core protein or a glycanated form of GPC3, was the major form of GPC3 detected (Fig. 2A).

Based on the above in vitro finding, we speculated that sGPC3, instead of core protein of GPC3, might be the major form of GPC3 in the sera of HCC patients. To avoid possible interference on immunoblotting by significant migration of albumin or immunoglobulin in the serum, we performed immunoprecipitation before immunoblotting using three N-mAbs (Fig. 2B). sGPC3 alone was successfully detected by immunoprecipitation with M18D04 (Fig. 2C) or M19B11 (data not shown) followed by immunoblotting with A1836A in the sera of patients with HCC, but not in sera from normal liver (NL). These results clearly demonstrate that sGPC3 is the major diagnostic target specifically detectable in the sera of HCC patients.

Soluble GPC3 Is Useful as a Serological Marker of WD HCC and MD HCC. We next constructed a sandwich ELISA system with monoclonal antibodies (mAbs). A representative immunoblotting of endogenous GPC3 in the cell lysate and culture supernatant with N-mAb and C-mAb. HepG2 and HuH6 were analyzed. Note that soluble GPC3 (sGPC3) alone is detected in the culture supernatant. Brute, glycanated GPC3 (smearing); closed arrowhead, core protein of GPC3 (Mr 66,000); open arrowhead, glycoprotein GPC3 (Mr 40,000); arrow, uncharacterized processed fragment of GPC3 (Mr 50,000). Lys, lysate; Sup, supernatant of culture media. B, immunoblotting analysis with anti-GPC3 antibodies A1836A, M18D04, and M19B11 recognized glutathione S-transferase-sGPC3 but did not recognize glutathione S-transferase. C, detection of sGPC3 alone in the sera of the patients with hepatocellular carcinoma. Sera from two patients with hepatocellular carcinoma and three healthy adults (NL) were analyzed by immunoprecipitation with M18D04 followed by immunoblotting with A1836A. HuH7 cells were analyzed as a reference. Closed arrowhead, core protein of GPC3 (Mr 66,000); open arrowhead, sGPC3 (Mr 40,000).

![Fig. 3. Characterization of endogenous glypican-3 (GPC3) proteins with monoclonal antibodies (mAbs).](image)

To verify the specificity of the assay, we performed immunoblotting of 10 sera samples from HCC with sGPC3 levels ranging from 4.0 to 55.0 ng/ml and 3 samples from NL with sGPC3 levels of <0.1 ng/ml. We detected only sGPC3 in all 10 HCC samples, whereas no band was detected in 3 samples from NL, indicating high sensitivity and specificity of the assay (Fig. 3B). When we examined sera from 69 cases with HCC, 38 cases with LC, and 96 cases with NL, the level of sGPC3 (mean ± SD) was 4.84 ± 8.91 ng/ml for HCC, 1.09 ± 0.74 ng/ml for LC, and 0.65 ± 0.32 ng/ml for NL and was significantly higher in HCC than in NL (P < 0.001, Student’s t test) or in LC (P < 0.01; Fig. 3C).

We then evaluated sGPC3 as a general marker for HCC in comparison with AFP. Initial analysis of the receiver-operating characteristic curve using the data from 69 cases with HCC and 38 cases with LC suggested that, used in isolation, sGPC3 is not as good as AFP: the calculated area under the receiver-operating characteristic curve was 0.729 for sGPC3 and 0.799 for AFP (Fig. 3D). The sensitivity and specificity of sGPC3 for the diagnosis of HCC (cutoff value, 2.0 ng/ml) were 51% and 90%, respectively, whereas those of AFP measured in parallel (cutoff value, 20 ng/ml) were 55% and 90%, respectively. AFP and sGPC3 were not correlated (r = 0.13), and combination measurement of both markers markedly improved sensitivity to 72%.

HCC may be divided into two subgroups correlating to the extent of disease: (a) one first treated by surgery, mainly with a solitary tumor or few tumors; and (b) the second treated with transcatheter arterial chemoembolization, mostly with multiple and advanced tumors. The serum level of sGPC3 was 2.61 ± 2.69 ng/ml for the former group,
Fig. 3. Evaluation of soluble glypican-3 (sGPC3) as a serological marker of hepatocellular carcinoma (HCC). A, standard curve of sandwich ELISA. B, high specificity of sandwich ELISA. Specific detection of sGPC3 alone solely in the sera with elevated sGPC3 level measured with sandwich ELISA. Sera from 10 patients with HCC and 3 healthy adults (NL) were analyzed by immunoprecipitation with M18D04 followed by immunoblotting with A1836A. Serum sGPC3 level is indicated for each sample. Open arrowhead, sGPC3 (Mr 40,000); closed arrowhead, IgG. C, distribution of sGPC3 in the sera of patients with normal liver, liver cirrhosis (LC), and HCC (surgery and transcatheter arterial chemoembolization subgroup). Mean ± SD (ng/ml) of serum sGPC3 is indicated. Number of samples is indicated as n. D, receiver-operating characteristic curve analysis of sGPC3 (thick line) and α-fetoprotein (thin line). Top panel, all of the 69 HCCs and 38 cases of LC were included in the analysis. Bottom panel, 32 HCCs (including 7 well-differentiated and 25 moderately differentiated HCCs) and 38 cases of LC were analyzed. Area under the receiver-operating characteristic curve is indicated.
sGPC3 as a novel serum marker of HCC

sGPC3 was identified as a potential serum marker of hepatocellular carcinoma (HCC) due to its expression in HCC cells. The authors demonstrated that sGPC3 is present in the culture supernatant and serum of HCC patients, with higher levels in patients with advanced disease stages. They also showed that sGPC3 is a more sensitive marker for early-stage HCC compared to alpha-fetoprotein (AFP), as calculated areas under the receiver-operating characteristic curve for stage HCC (7 cases with WD HCC and 25 cases with MD HCC), treated by surgery were confined to 32 cases with relatively early-stage HCC. Furthermore, sGPC3 was found to be a better marker for HCC than AFP, with 72% sensitivity and 90% specificity, compared to AFP's 30% sensitivity and 70% specificity. These results suggest that sGPC3 could be a valuable addition to current diagnostic tools for HCC, potentially improving the accuracy of early detection and treatment planning.
Identification of Soluble NH2-Terminal Fragment of Glypican-3 as a Serological Marker for Early-Stage Hepatocellular Carcinoma

Yoshitaka Hippo, Kiyotaka Watanabe, Akira Watanabe, et al.

Cancer Res 2004;64:2418-2423.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/7/2418

Cited articles
This article cites 29 articles, 10 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/7/2418.full#ref-list-1

Citing articles
This article has been cited by 22 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/64/7/2418.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/64/7/2418.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.