












be feasible in a clinical setting, whereas liposomes have been used
extensively clinically for chemotherapy and other delivery systems.
Because delivery in this study was efficient to other vital organs,

most notably in the liver and kidney, this method may be used in

noncancerous conditions shown to be amenable to siRNA therapy
in preclinical models, such as viral hepatitis (9, 29) and HIV (30).
However, this mode of delivery is not tissue specific, so it will be
important that the gene chosen to down-regulate with siRNA is
not crucial to function by normal cells. Alternatively, further
modifications of the liposome may allow tumor-selective delivery
(31, 32).
The first demonstration that siRNA had activity in vivo was in

the hydrodynamic injection of naked siRNA that effectively
decreased luciferase expression in the livers of mice (29). Along
with confirmatory reports of high-pressure i.v. injection (33, 34),
others have shown that siRNA has activity in vivo using delivery
in viral vectors (8, 9), retinal electroporation (35), and direct
intracellular (36), intratumoral (37), intravitreal (38), intranasal
(39), and intrathecal (40) administration. Although these methods
are useful in a preclinical setting, their delivery methods and the
climate of viral gene therapy make clinical applicability limited.
Sorensen et al. effectively reduced tumor necrosis factor-a

expression in the liver and spleen by delivering siRNA packaged in
cationic liposomes (DOTAP), protecting mice from a lethal dose of
lipopolysaccharide (41). We have found that DOTAP accumulates
near the vasculature and is preferentially taken up by the liver and
spleen, limiting its effectiveness in systemic or antitumor therapy.
Soutschek et al. have reported that siRNA conjugated with
cholesterol improved delivery to multiple organs and that down-
regulation of ApoB was achieved in liver and jejunum (10).
However, the effects of cholesterol conjugation on siRNA activity
and duration of effect, efficiency of uptake in tumors, and toxicities
are not known. Duxbury et al. have shown that systemic delivery of
naked siRNA-targeting FAK (42), EphA2 (26), or CEACAM6 (43)
down-regulated protein expression and decreased growth of a
single s.c. injected malignant pancreatic cell line. It is possible that
naked siRNA may be effectively delivered to s.c. sites, but not to
orthotopic sites, as supported by our results. To the best of our
knowledge, others have not reported successful therapy with naked
unaltered siRNA in other cancer models.
Recent studies suggest that the specificity of siRNA may not

be as absolute as initially hoped. An analysis of gene expression
profiling suggested that RNA down-regulation might occur with
as few as 11 complementary base pairs within the 21-bp siRNA
sequence (44). A recent study of commonly used siRNA sequences
found that f 75% of these sequences had nonspecific targeting
(45). Therefore, in siRNA design, a BLAST search for cross-reactive
21-bp sequences is insufficient to have confidence that the mRNA
of interest is the only target. Furthermore, siRNAs may bind mRNA
of only near-perfect complementarity and prevent translation
without degradation (46). This is the mechanism used by en-
dogenously produced microRNAs (miRNA), believed to be another
method of natural regulation of gene expression (47). Crossover of
siRNA into the miRNA pathway or down-regulation by partial
homology seem to be minimal and require participation of several
siRNA sequences, but this potential should caution conclusions
made regarding the specificity of gene down-regulation. It is
difficult at this time to speculate which particular proteins could
be ‘‘off-site’’ targets of nonspecific siRNA silencing. Studies with
microarray analysis or reporter arrays may allow such projections
to be made in the future (44, 48). Another level of questionable
specificity of siRNA introduction lies in activation of the innate
immune system. siRNA therapy has, in some circumstances, been
shown to activate IFN (49, 50). Of course, in the treatment of
cancer, IFN induction may be of additional benefit, as long as

Figure 6. EphA2 expression and MVD after prolonged siRNA therapy. A,
tumors collected at the conclusion of the HeyA8 therapy trials were subjected
to immunohistochemistry for EphA2. Representative sections. The distribution of
EphA2 staining in five samples of each group was quantified, with the mean
for each group shown in the bottom right of each panel. B and C, these tumors
were stained for CD31, and the number of vessels per � 10 field counted as
described in Materials and Methods. Representative sections from each group
are pictured, with mean MVD pictured graphically in C.
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toxicities are limited. This is supported by our finding that therapy
with a nonspecific siRNA construct results in some reduction in
tumor growth compared with empty liposomes.
Toxicities of liposomes are believed to be limited. Liposomal

chemotherapy is routinely used in treatment of ovarian and other
cancers (51). In a phase I trial with cationic liposomes carrying a
plasmid encoding the E1A gene, fever and pain 3 hours after
treatment were the dose-limiting toxicities (52). Although this is
the best estimation of side effects we can currently predict, delivery
of siRNA is less likely to be recognized as foreign, and host
response will almost certainly differ.
The charge of the liposome affects the tissue specificity of

liposomal uptake. Macrophages seem to preferentially take up
negatively charged liposomes (53). Different malignant cell lines
have varying uptake patterns regarding positive, neutral, or
negative charges, and in vivo uptake patterns may differ further
(53). Liposomal makeup also influences cellular toxicity, with
siRNA delivery using a liposome with a higher proportion of
neutral lipids leading to less cellular toxicity without compromis-
ing ability to down-regulate gene expression in vitro (54). Clearly, a
complete understanding of the best liposomal makeup for delivery
of therapeutic substances is still evolving. It is possible that with
siRNA delivery the use of a neutral lipid, such as DOPC, allows a
balance among efficient uptake of the siRNA into a liposome at
preparation, uptake of the liposome into a cell, and breakdown of the
intracellular liposome with release of siRNA contents into the
cytoplasm.
EphA2 is an attractive target for antitumor therapies. It is

minimally expressed in adults, being limited to some epithelial
tissues (55), and the EphA2 knockout mouse is phenotypically
normal (56). However, EphA2 is overexpressed by several cancers
(21), including ovarian, in which it is associated with poorer
survival (22). Furthermore, the receptor primarily exhibits carci-

nogenic properties through high levels of the unphosphorylated
form. Therefore, decreasing total EphA2 levels are more likely to be
effective than attempts to block its activation. We have shown that
EphA2-targeting siRNA therapy leads to a decrease in MVD. Others
have seen an antiangiogenic effect with EphA2 down-regulation
(25), and we have seen this with antibody-based approaches to
decrease EphA2 expression in vivo .5 Delineation of biological
pathways dependent on EphA2 is difficult, because EphA2
modulation has little effect on monolayer cell culture properties
(21). Further studies of in vivo–treated tissues may help to define
other mechanisms affected by EphA2 overexpression.
In vivo delivery of siRNA in experimental models has been

shown to provide feasibility for use in humans. Liposomal
delivery of drugs is established and safe, and their use for siRNA
delivery may make this therapeutic modality clinically attractive.
We have shown that using DOPC-complexed siRNA allows
delivery to tumor and other tissues, with corresponding gene
targeting and reduced tumor growth. With further study and a
cautious approach, this is a model that can be taken into a
clinical setting for cancer therapy as well as for other conditions
amenable to specific gene down-regulation.
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