




apoptosis after deletion of Brca2 , the small intestine repopulates
very slowly, with f 50% of recombined stem cells replaced by those
which had failed to recombine 6 months after Brca2 deletion (11).
To test whether treatment with the PARP inhibitor increased the
rate of repopulation in Brca2-deficient tissue, we used mice which
carried the Rosa26R reporter allele (20) as well as the Ah-Cre and
floxed Brca2 genes. Mice were subjected to twice-weekly injections
of 15 mg/kg KU0058948 for 3 weeks and then scored for
recombined crypts using a simple whole-mount stain for the
reporter allele (11). Figure 3A shows representative areas of small
intestine from mice, either heterozygous or homozygous for Brca2 ,
treated with the PARP inhibitor or saline, and clearly shows a
reduction in recombined stem cells in Brca2-deficient intestine in
which PARP inhibition has taken place. The intestines of three mice

from each treatment were scored for the percentage of recombined
crypts (blue) and the resulting graph is shown in Fig. 3B . Signi-
ficantly fewer recombined crypts remain in Brca2-deficient mice
treated with the PARP inhibitor compared with untreated controls
(P = 0.04). As we have previously shown (11), a simple PCR strategy
confirmed that the recombined (‘‘white’’) areas of intestine
contained no recombined floxed Brca2 allele (data not shown).
Overall, the presented data report two phenomena: First, they

confirm our previous data indicating that Brca2-deficient cells,
including stem cells, are removed from the small intestine
following DNA damage, and that this effectively prevents the
accumulation of cells with the potential to acquire further cancer-
causing mutations (11). In this study, where the detection and
subsequent repair of DNA damage is reduced through inhibition of

Figure 2. Apoptotic response of Brca2 -deficient small intestine following a single i.p. injection of 15 mg/kg KU0058948. A and B, levels of apoptosis and mitosis 6 (A )
or 12 (B ) hours after treatment. Open columns, apoptosis; closed columns, mitosis; y axis, percentage of apoptotic bodies/mitotic figures per crypt. C, representative
images of small intestinal crypts from Ah-cre+ Brca2 fl/fl mice 12 hours after treatment with either saline or 15 mg/kg PARP inhibitor. Bar, 50 Am. D, representative
image from Ah-cre+ Brca2 fl/fl small intestine 12 hours after treatment with 15 mg/kg PARP inhibitor. Arrow, a healthy, highly proliferating crypt. Bar, 50 Am.
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one of the key proteins involved in damage recognition (12), both
the apoptotic response and the rate of repopulation are increased,
presumably due to the increased number of cells in which the
defective homologous recombination pathway is required but
unavailable. Second, we have modeled for the first time the in vivo
consequences of drug challenge on otherwise physiologically
normal Brca2-deficient cells. We observe highly efficient and
selective deletion of Brca2�/� cells with no apparent deleterious
effect on surrounding Brca2-functional cells or whole animal
physiology. It is interesting to note that the effects of the PARP
inhibitor seem to be more highly specific to cells lacking Brca2
compared with other DNA-damaging agents we have tested in
our model system. Thus, we have previously shown that a low
concentration of mitomycin C (0.1 mg/kg) specifically kills
Brca2 -deficient cells in the small intestine, but at higher
concentrations this specificity was reduced, with levels of cell
death also increased in cells with functional Brca2 (11). In contrast,
our current data show that PARP inhibition delivers even higher
levels of Brca2�/� cell deletion and yet has no deleterious effect
on Brca2+/� (wild-type) cells.
Taken together, our results go beyond previous studies (12–17)

to show that PARP inhibition is highly effective at specifically
deleting nonneoplastic Brca2-deficient cells, and thus may be
effective for prophylactic therapy or therapy subsequent to surgery
in BRCA2 mutation carriers, as well as against BRCA2-deficient
tumors as previously suggested. Deficiency of Brca2 in our model
intestinal system does not predispose to tumorigenesis (11) and
thus we cannot address whether Brca2-deficient tumors regress,
or can be prevented, in this system. We are now pursuing studies
within the mouse mammary epithelium which will allow us
to directly test the efficacy of PARP inhibitors for both tumor
and prophylactic therapy.
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Figure 3. Rapid repopulation in Brca2 -deficient small intestine following
serial injections of 15 mg/kg KU0058948. A, representative fields from small
intestines of mice following six biweekly injections of PARP inhibitor. The
intestines were inverted to aid counting of positive crypts (blue ). Bar, 500 Am.
B, percentage of recombined crypts (blue ) in mice treated with six biweekly
injections of PARP inhibitor.
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In the article on how Brca2 deficiency sensitizes cells to PARP
inhibition in the November 15, 2005 issue of Cancer Research (1),
the grant support in the Acknowledgment should have read as
follows: Association for International Cancer Research grant no.
03–336, KuDOS Pharmaceuticals Ltd., and Wales Gene Park.
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