Distal Chr 4 Harbors a Genetic Locus (Gct1) Fundamental for Spontaneous Ovarian Granulosa Cell Tumorigenesis in a Mouse Model

Ann M. Dorward, Kathryn L. Shultz, Lindsay G. Horton, Renhua Li, Gary A. Churchill, and Wesley G. Beamer

The Jackson Laboratory, Bar Harbor, Maine

Abstract

The spontaneous development of juvenile-onset ovarian granulosa cell tumors in mice of the SWXJ-9 recombinant inbred strain is a model for juvenile-type granulosa cell tumors that appear in very young girls. To expedite gene discovery in this mouse model of childhood cancer, we did a gene mapping study with the SWXJ-9 recombinant inbred strain and the evolutionarily divergent Mus musculus castaneus (CAST/Ei) strain as a mapping partner. Our mapping strategy focused on autosomal determinants of susceptibility with a backcross scheme that exploited a paternal, parent-of-origin effect for a X-linked gene (Gct1) that strongly supports granulosa cell tumor development. Of 1,968 backcross females examined, we detected 81 granulosa cell tumor-bearing animals and compared their allelic inheritance patterns to non-tumor-bearing siblings in a case-control analysis. The results of our study have confirmed an important locus on mouse chromosome (Chr) 4 (Gct1) that strongly supports granulosa cell tumor development. Of 1,968 backcross females examined, we detected 81 granulosa cell tumor-bearing animals and compared their allelic inheritance patterns to non-tumor-bearing siblings in a case-control analysis. The results of our study have confirmed an important locus on mouse chromosome (Chr) 4 (Gct1) and have revealed new loci for granulosa cell tumor susceptibility (Gct2-Gct9) on Chrs 1, 2, and 13 with susceptibility alleles contributed by the SWXJ-9 progenitor. Two novel gene-gene interactions supportive for granulosa cell tumor development were also observed between loci on Chrs 17 and 18 and loci on Chrs 2 and 10. Our data substantiate the evidence that Gct1 on Chr 4 is a fundamental onco-gene for granulosa cell tumorigenesis in mice and has identified additional interacting autosomal loci that support tumor development. (Cancer Res 2005; 65(4): 1259-64)

Introduction

In infants, girls, and young women, juvenile-type granulosa cell tumors of the ovary represent immediate endocrinological and reproductive complications that require surgical intervention and may pose a life-threatening situation if the cancer is at an advanced stage of growth with local or distant metastases (1). Per annum, the number of cases of juvenile-type granulosa cell tumor is low in North America, thus precluding human genetic linkage studies to identify candidate susceptibility genes for this childhood cancer. To expedite the discovery of granulosa cell tumor susceptibility genes, we are pursuing genetic determinants of susceptibility in the SWXJ-9 recombinant inbred (RI) mouse model that parallels the histological, endocrinological, and developmental timing characteristics of human juvenile-type granulosa cell tumors (2–4).

Juvenile-type granulosa cell tumors were first observed in the SWR/Bm and SWR/J strain females at a very low penetrance (~1-2%), and the SWXJ RI strain set was subsequently derived to confirm the heritable nature of this trait (3). Tumor-susceptible SWR/Bm (SWR) females were mated to tumor-resistant SJL/Bm (SJL) males, and 4 pairs of F1 offspring were mated to generate 14 F2 breeder pairs. These F2 breeder pairs were subsequently inbred for 20 generations to fix large segments of the genome as homozygous SWR or SJL in the SWXJ RI strain set (3, 5, 6). Of the 14 established SWXJ RI lines, SWXJ-9 females show the highest spontaneous granulosa cell tumor incidence, with ~10% of virgin females developing unilateral or bilateral tumors that are macroscopically visible by 6 weeks of age (7). Similar to SWR females, granulosa cell tumor initiation in SWXJ-9 females is restricted to the time of ovarian maturation at puberty, within the window of 3 to 5 weeks of age. Beyond this timeframe, females that have not developed granulosa cell tumors are no longer at risk, have normal reproductive cycles and normal fertility, and develop no other visible pathologic changes in the ovary through 12 months of age. The granulosa cell tumors are endocrinologically active and secrete inhibin and estrogen in the presence of appropriate androgenic substrate, a profile identical to human juvenile-type granulosa cell tumors that leads to symptoms of precocious puberty in young girls or menstrual irregularities in postpubertal women (1, 8–10). The mouse tumors are homogeneously composed of granulosa cells and appear as highly vascularized solid or cystic masses. Between 7 and 12 months of age, granulosa cell tumor-bearing mice may develop multiple metastases with the most commonly seeded organs being renal lymph nodes, liver, and lungs (11). Human juvenile-type granulosa cell tumors also may become malignant, and the diagnosis of advanced-stage disease (III) with tumor spread outside the ovarian capsule confers a poor patient prognosis. Overall, the common biological properties of the mouse and human juvenile-type granulosa cell tumors suggest that similar genetic pathways are involved. Ideally, the identification of genetic determinants for granulosa cell tumor susceptibility in the mouse will provide valuable leads for the discovery of genes involved in juvenile-type granulosa cell tumor etiology in humans.

Two previous mapping studies designed to identify genes associated with granulosa cell tumor development in SWR mice determined that tumor susceptibility is a polygenic trait involving several granulosa cell tumor (Gct) susceptibility genes contributed by SWR. First, analysis of the SWXJ RI strain set revealed Gct1 on Chr 4 as a locus required for spontaneous granulosa cell tumor onset and enhanced tumor initiation by dehydroepiandrosterone (7). Secondly, a (SWR × SJL)F2 intercross mapping study confirmed significant linkage of granulosa cell tumor susceptibility with SWR alleles at Gct1 on Chr 4 along with Gct2 on Chr 12, Gct3 on Chr 15, and Gct5 on Chr 9 (12).
In addition to these SWR loci, two X-linked tumor incidence modifier genes (Gct4 and Gct6) have been identified in the SJL strain mapping partner (12, 13). The Gct4 gene shows a strong parent-of-origin effect: If female mice of an otherwise SWR autosomal background inherit a SJL-derived Gct4 allele (Gct4\(^{\text{S}}\)) from their father, there is a dramatically increased risk of ovarian tumor development. If female mice of an otherwise SWR strain and the evolutionarily divergent Mus musculus castaneus (CAST/Ei) strain, the results of this independent study confirm the essential importance of SWR alleles at Gct4\(^{\text{S}}\) allele. We have exploited this paternal parent-of-origin effect in a backcross mapping strategy between the granulosa cell tumor-susceptible SWXJ-9 RI strain and the evolutionarily divergent Mus musculus castaneus (CAST/Ei) strain. The results of this independent study confirm the essential importance of SWR alleles at Gct4 for granulosa cell tumorigenesis and have revealed newly identified susceptibility loci on Chr1, 2, 13 along with epistatic loci that support ovarian tumor development.

Materials and Methods

Mice. All mice were produced and housed in our research colony at The Jackson Laboratory (Bar Harbor, ME) under 14:10 hour light/dark cycles. Mice were provided with pasteurized NIH-31 diet (6% fat, Purina Mills International, Brentwood, MO) ad libitum to retard bacterial growth. Animals were weaned at 20 to 23 days of age and housed in groups of 3 to 5 in 329 cm\(^2\) polycarbonate cages containing sterilized White Pine shavings. All animal procedures were approved by the Animal Care and Use Committee of The Jackson Laboratory.

Backcross Mapping Scheme. Females of the SWXJ-9 strain have the highest spontaneous granulosa cell tumor incidence of any of the 14 SWXJ RI lines and thus were chosen to map susceptibility loci associated with this trait. The SWXJ-9 strain carries the SJL allele at the Gct4 locus on Chr X that confers strong support for granulosa cell tumorigenesis when paternally inherited (12, 13). For our mapping strategy, we combined the SWXJ-9 characteristic of enhanced granulosa cell tumor penetrance with the rich polymorphic potential of the tumor resistant mapping partner strain CAST/Ei (hereafter, CAST).

Female CAST mice were mated to SWXJ-9 strain males and the F\(_1\) female offspring were backcrossed to SWXJ-9 males to generate N2F1 females. At 8 weeks of age, the N2F1 females were necropsied to assess granulosa cell tumor development by macroscopic examination of the ovaries. At this age, tumors usually present as cystic or solid hemorrhagic masses 5 to 10 mm in diameter and may be bilateral. If a tumor-bearing female was identified, granulosa cell tumors and kidneys were collected from the individual and an unaFFECTed littermate as a control and stored frozen for DNA isolation. Of 1,968 N2F1 females examined, 81 granulosa cell tumor-bearing females were identified (4.1% tumor frequency). No granulosa cell tumors were observed in the 46 F\(_1\) female breeders (mean age at necropsy 43 weeks).

Genotyping. DNA isolated from kidney of N2F1 females was genotyped with a series of 81 single sequence length polymorphic markers spaced on average 20 cM across the genome. The single sequence length polymorphic markers used were D1Mit68, D1Mit5, D1Mit282, D1Mit7, D1Mit46, D1Mit215, D1Mit14, D1Mit51, D2Mit1, D2Mit61, D2Mit100, D2Mit395, D2Mit22, D2Mit145, D3Mit203, D3Mit79, D3Mit32, D4Mit18, D4Mit31, D4Mit605, D4Mit232, D4Mit190, D4Mit256, D5Mit76, D5Mit10, D5Mit122, D6Mit83, D6Mit29, D6Mit15, D7Mit176, D7Mit83, D7Mit30, D7Mit328, D8Mit289, D8Mit80, D8Mit92, D8Mit57, D9Mit213, D9Mit259, D9Mit307, D9Mit310, D9Mit52, D10Mit16, D10Mit130, D10Mit12, D11Mit77, D11Mit320, D11Mit338, D12Mit182, D12Mit112, D13Mit7, D13Mit266, D13Mit177, D13Mit27, D13Mit292, D14Mit54, D14Mit160, D14Mit170, D15Mit13, D15Mit66, D15Mit213, D15Mit35, D16Mit57, D16Mit189, D16Mit71, D17Mit197, D17Mit206, D17Mit190, D18Mit12, D18Mit205, D18Mit3, D19Mit8, D19Mit10, D19Mit66, DXMit210, DXMit96, DXMit170, DXMit138, DXMit231, and DXMit35. Primer pairs were purchased from Integrated DNA Technologies (Corvalle, IA) and Qiagen (Valencia, CA).

Simple sequence length polymorphic PCR products were separated by horizontal electrophoresis in 4% MetaPhor agarose slab gels (Cambrex Bio Science, Rockland, ME) and the bands visualized by ethidium bromide staining were photographed for scoring purposes.

Statistical Analyses. Genome-wide scans were carried out for both main effect and interacting quantitative trait loci (QTL) using the method of Sen and Churchill (14). Logarithm of odds ratio (LOD) scores were computed at 2 cM intervals across the genome. Significant loci exceed the genome-wise adjusted \(P < 0.05 \) level as determined by permutation analysis (15). Simultaneous search genome scans for all pairs of markers were also carried out to detect epistatic interactions (14, 16). Significant QTL by QTL interactions were detected as locus pairs with significant \(P < 0.05 \), genome-wide adjusted) joint LOD score and a significant \(P < 0.001 \), unadjusted) interaction component. All significant loci and interactions were analyzed jointly in a multiple regression model to obtain unbiased estimates of their effects. Significance levels in the multiple regression may differ from those in the genome scans due to the adjustment for other loci in the model.

Results

The genome wide scan for autosomal loci associated with granulosa cell tumorigenesis in the CAST and SWXJ-9 backcross identified four significant LOD score peaks on four individual chromosomes, Chr 1, 2, 4, and 13, as shown in Fig. 1. The interval maps for each of these chromosomes are presented in Fig. 2A to D with their assigned locus names. The Gct1 locus on distal Chr 4 (Fig. 2C) maps to a genetic region previously identified in the F\(_2\) intercross mapping study between SWR and SJL strains (12). The other susceptibility loci are unique to this mapping cross and have been assigned unique locus names: Gct7 (Chr 1), Gct8 (Chr 2), and Gct9 (Chr 13). The interval map for the Gct7 locus on Chr 1 (Fig. 2A) appears as though two independent susceptibility loci are side by side with peaks at 36 and 48 cM. We explored the evidence for two QTL on Chr 1, but the difference in LOD score (0.5) between a two-locus model and a one-locus model did not achieve significance, however, and our data support only one locus (Gct7) for this interval. Table 1 summarizes the chromosomal location, 95% confidence interval, peak DNA markers, and LOD scores for the main effect loci Gct1, Gct7, Gct8, and Gct9.

In addition to main effect loci, the analyses for interacting granulosa cell tumor susceptibility loci revealed two significant genetic interactions: one between Gct8 on Chr 2 (marker D2Mit145) and a locus on Chr 10 (marker D10Mit80) and a second interaction between a locus on Chr 17 (marker D17Mit197) and a locus on Chr 18 (marker D18Mit12). The involvement of the Chr 10, 17, and 18 loci for granulosa cell tumor development was not detected in the overall genome scan and thus represent epistatic loci. A multiple regression model for the cumulative

![Figure 1. Genome-wide scan for granulosa cell tumor susceptibility loci. Dashed lines, significant \(P = 0.05 \); solid lines, significant \(P = 0.01 \) critical levels for LOD scores; arrows, main effect QTL on Chr 1, 2, 4, and 13.](image-url)
effects of Gct1, Gct7, Gct8, and Gct9 main effects and the two genetic interactions is presented in Table 2. The four individual loci and two interactions account for 48.2% of the phenotypic variance in this genetic cross.

The genotype ratios for tumor-bearing animals versus unaffected controls are calculated in Table 3 for the peak DNA markers of Gct1, Gct7, Gct8, and Gct9 loci. For each marker, the number of tumor-bearing animals with a homozygous SWXJ-9 (S/S) genotype was significantly greater than the heterozygous (S/C) compared with the expected ratio of 1:1 for backcross offspring. In contrast, the genotype ratios of unaffected animals were not different from 1:1 between (S/S) and (S/C). These results show homozygosity for SWXJ-9-derived alleles increases the probability of granulosa cell tumor development. This observation is also graphically depicted in Fig. 3 as allele effect plots for the individual main effect loci and the two genetic interactions. The allele effect plots for Gct1, Gct7, Gct8, and Gct9 represented by their corresponding peak markers show that alleles derived from the SWXJ-9 strain (S) are supportive for granulosa cell tumor frequency observed in the homozygous state (S/S) compared with the heterozygous state (S/C; Figs. 3A-D). In contrast, the interacting genetic loci show unique patterns for enhanced granulosa cell tumor probability. The locus Gct8 on distal Chr 2 (D2Mit145) is further supportive for granulosa cell tumor development if the locus on Chr 10 (D10Mit80) is heterozygous for SWXJ-9 and CAST alleles compared with the homozygous state (Fig. 3E). The second genetic interaction between the Chr 17 locus (D17Mit197) and the Chr 18 locus (D18Mit12) shows a crosswise interaction for granulosa cell tumor frequency whereby heterozygosity or homozygosity at both loci provides enhanced support for granulosa cell tumor frequency compared with conditions of mixed heterozygosity and homozygosity at either locus (Fig. 3F).

As the SWXJ-9 strain is a recombinant inbred strain composed of SWR and SJL chromosomal regions, we compared the locations of Gct1, Gct7, Gct8, and Gct9 to the strain distribution map of SWXJ-9 to determine the allelic contributions at these loci (5, 6). Compared with results obtained in the previous mapping study where all autosomal susceptibility alleles were derived from the SWR progenitor, both Gct7 and Gct9 reside in regions of SJL genomic material. This indicates that SJL alleles at these autosomal loci can contribute to granulosa cell tumor susceptibility in SWXJ-9 females, although females of the SJL strain do not develop granulosa cell tumors. This observation awaits confirmation via identification of the Gct7 and Gct9 genes and sequencing of both SWR and SJL progenitors. The Gct8 locus resides in a region of Chr 2 where either SWR or SJL segments could exist; thus, assigning the progenitor source of the active alleles also requires identification of the tumor susceptibility gene and comparison of SWR and SJL variants.

In contrast to Gct7 to Gct9, more confidence can be placed on the allelic contribution of SWR at the Gct1 locus based on three independent lines of evidence: (a) SWR alleles at the Gct1 locus are a common feature of the SWXJ RI strains that develop tumors either spontaneously or under the influence of dehydroepiandrosterone, including the SWXJ-9 line; (b) Gct1SW is significantly linked with spontaneous tumor development in the (SWR × SJL)F2 intercross mapping study; and (c) Gct1SW by virtue of the SWXJ-9 contribution, is again significantly linked with spontaneous granulosa cell tumor development in this backcross mapping study with the CAST strain. These data indicate that Gct1CAST and Gct1SW alleles are not functionally equivalent and that the Gct1 locus contains the fundamental gene that confers granulosa cell tumor susceptibility in SWR and SWXJ-9 mice.

Discussion

The objective of our study was to test for genetic determinants in a spontaneous mouse model of juvenile-type granulosa cell tumorigenesis with a mapping cross that possessed greater power for genetic analyses than those previously available. The mapping scheme was designed to identify autosomal loci that support granulosa cell tumorigenesis when phenotypic penetrance of this trait is raised by strong, paternally derived X-linked modifiers of

<table>
<thead>
<tr>
<th>Table 1. Chromosomal location, peak marker, 95% confidence interval, and LOD score for spontaneous granulosa cell tumor main effect QTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Gct1</td>
</tr>
<tr>
<td>Gct7</td>
</tr>
<tr>
<td>Gct8</td>
</tr>
<tr>
<td>Gct9</td>
</tr>
</tbody>
</table>

Figure 2. Chromosome interval maps of tumor susceptibility loci with 95% confidence intervals for Gct7 (A), Gct8 (B), Gct1 (C), and Gct9 (D). Solid lines, region containing the locus; dotted lines, 95% confidence intervals, as determined by posterior probability density. Location of peak DNA markers is identified. Dashed lines, significant (P = 0.05) and highly significant (P = 0.01) critical levels for LOD scores.
Table 2. Multiple regression analysis for granulosa cell tumor frequency in (CAST × SWXJ-9)N2F1 progeny

<table>
<thead>
<tr>
<th>Genetic source</th>
<th>DF</th>
<th>Type II S</th>
<th>F value</th>
<th>P (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1Mit215</td>
<td>1</td>
<td>3.274</td>
<td>23.748</td>
<td>2.73 × 10^{-6}</td>
</tr>
<tr>
<td>D2Mit1145</td>
<td>2</td>
<td>2.374</td>
<td>8.611</td>
<td>0.0003</td>
</tr>
<tr>
<td>D4Mit232</td>
<td>1</td>
<td>2.772</td>
<td>20.103</td>
<td>1.44 × 10^{-5}</td>
</tr>
<tr>
<td>D13Mit292</td>
<td>1</td>
<td>1.388</td>
<td>10.066</td>
<td>0.0018</td>
</tr>
<tr>
<td>D10Mit80</td>
<td>2</td>
<td>0.640</td>
<td>2.323</td>
<td>0.1014</td>
</tr>
<tr>
<td>D17Mit197</td>
<td>2</td>
<td>1.432</td>
<td>5.193</td>
<td>0.0065</td>
</tr>
<tr>
<td>D18Mit12</td>
<td>2</td>
<td>1.457</td>
<td>5.283</td>
<td>0.0060</td>
</tr>
<tr>
<td>D2Mit145 * D10Mit80</td>
<td>1</td>
<td>0.634</td>
<td>4.596</td>
<td>0.0336</td>
</tr>
<tr>
<td>D17Mit197 * D18Mit12</td>
<td>1</td>
<td>1.418</td>
<td>10.282</td>
<td>0.0016</td>
</tr>
<tr>
<td>Error</td>
<td>152</td>
<td>20.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>161</td>
<td>40.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance explained (%)</td>
<td>48.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Genotype of tumor-bearing females and control females at peak markers on Chr 4, 1, 2, and 13

<table>
<thead>
<tr>
<th>Peak marker</th>
<th>Genotype ratios of tumor-bearing females</th>
<th>Genotype ratios of normal females</th>
<th>(\chi^2)</th>
<th>(P)</th>
<th>Relative risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S/S</td>
<td>S/C</td>
<td>S/S</td>
<td>S/C</td>
<td></td>
</tr>
<tr>
<td>D4Mit232</td>
<td>71</td>
<td>10</td>
<td>44</td>
<td>37</td>
<td>21.85</td>
</tr>
<tr>
<td>D1Mit215</td>
<td>72</td>
<td>9</td>
<td>41</td>
<td>40</td>
<td>28.11</td>
</tr>
<tr>
<td>D2Mit1145</td>
<td>60</td>
<td>21</td>
<td>39</td>
<td>42</td>
<td>11.45</td>
</tr>
<tr>
<td>D13Mit292</td>
<td>57</td>
<td>24</td>
<td>32</td>
<td>49</td>
<td>15.58</td>
</tr>
</tbody>
</table>

NOTE: S/S homozygous for SWXJ-9 alleles, S/C heterozygous for SWXJ-9, and CAST alleles.
epigenetic changes, such as altered methylation patterns, may be of particular relevance for predisposition to childhood tumors (27, 29). The autosomal granulosa cell tumor susceptibility genes active in this mouse model may not be classic oncogenes or tumor suppressor genes but rather modifiers of epigenetic regulation. Fine mapping and positional cloning of the Gct1 locus will be a priority for testing this hypothesis.

The newly identified Gct susceptibility loci observed in this mapping cross (Gct7 on Chr 1, Gct8 on Chr 2, and Gct9 on Chr 13) do not coincide with loci identified for granulosa cell tumor susceptibility in the previous (SWR × SJL)F₂ intercross, nor are the previous loci (Gct2 on Chr 12, Gct3 on Chr 15, and Gct5 on Chr 9) significant for linkage in this backcross (12). These six loci are thus operative in a strain-dependent manner, although they each have significant influence on the development of granulosa cell tumors. The newly identified Gct7, Gct8, and Gct9 loci may reflect important modifier genes that support the elevated level of spontaneous granulosa cell tumorigenesis observed in the SWXJ-9 RI strain. This inference is based on the 5- to 10-fold increased tumor frequency observed in SWXJ-9 females compared with females of the SWR progenitor strain, an increase that cannot solely be attributed to the parent-of-origin effect of X-linked factors (12). Both Gct7 and Gct9 arise from SJL chromosomal segments of the SWXJ-9 RI strain and could act as modifiers for tumor susceptibility, which have negative activity when the alleles are derived from SWR. An examination of the strain distribution haplotype of another member of the SWXJ RI strain set (SWXJ-8) also suggests that the presence of SJL alleles at Gct7, Gct9, and perhaps Gct8 may explain the difference between the 0.4% spontaneous tumor incidence observed in SWXJ-8 and the 10% observed in SWXJ-9 despite their common genotypes at Gct1 and Gct4 (5–7). Under this hypothesis, Gct7, Gct8, and Gct9 loci would act as strain-dependent, genetic modifiers of granulosa cell tumor susceptibility.

There was evidence for two gene-gene interactions in this backcross mapping study: one was detected between the Gct8 locus on Chr 2 and a proximal locus on Chr 10. Granulosa cell tumor frequency increased when homozygosity for SWXJ-9 alleles on Chr 2 was combined with heterozygosity at the Chr 10 locus. The second interaction was between two loci on Chr 17 and 18, which do not seem as significant loci in the overall genome scan. The interaction between the Chr 17 and 18 loci has an interesting crosswise pattern whereby heterozygosity or homozygosity at either locus has to be matched for increased support of granulosa cell tumorigenesis. Identification of the fundamental genes involved in granulosa cell tumor susceptibility (Gct1 on Chr 4 and Gct4 on Chr X) may provide clues to the identity of candidate granulosa cell susceptibility genes at Gct7, Gct8, and Gct9 and the interacting loci based on biological associations.

Other mouse models of granulosa cell tumors have been generated with transgene and knockout technologies but differ from the spontaneous SWXJ-9 model, as the tumors can be a mixed population of granulosa cell cells and thecal cells, the phenotypic penetrance is very high, and there is no evidence of a restricted developmental window for granulosa cell tumor susceptibility (30–32). One of these models uses a transgene to overexpress the gonadotropin luteinizing hormone to induce granulosa cell tumors in Swiss-derived CF-1 mice, and granulosa cell tumor susceptibility was still determined to be a strain-dependent and polygenic trait, although no mapping information is currently available for comparison with the Gct loci identified in this study (32). Lastly, methods for generating ovarian granulosa cell tumors by carcinogenic exposure or ionizing radiation have been explored in various mouse strains; however, the genetic susceptibility loci remain to be identified (33).

Cytogenetic analyses of human juvenile-type granulosa cell tumors has suggested an association of trisomy Chr 12 and/or monosomy Chr 22 as common features that may be either relevant to or a consequence of tumor development (34–37). The main effect Gct loci revealed in this mapping cross do not share regions of homology with either of these human chromosomes. The interacting loci on Chr 10 identified in this mapping cross may have relevance to human granulosa cell tumor cases with trisomy for Chr 12, because human Chr 12 is homologous to a large extent with mouse Chr 10. Given the scarcity of information about specific genes associated with juvenile-type granulosa cell tumorigenesis, we are pursuing genetic determinants in this model of human pediatric cancer based on the strength of common histological and endocrinological characteristics between mouse and human granulosa cell tumors. Because the Gct1 locus is significantly linked with the granulosa cell tumor phenotype in three independent mapping studies with divergent strains, high resolution mapping efforts are under way for this ovarian granulosa cell tumor locus.
Acknowledgments

Received 8/20/2004; revised 10/12/2004; accepted 12/5/2004.

Grant support: Cancer Research Foundation of America fellowship (A.M. Dorward); Maine Cancer Foundation grant (A.M. Dorward); American Institute for Cancer Research grant (W.G. Beamer); NIH grants CA88327 (G.A. Churchill and B. Li), AR43618 (W.G. Beamer and L.G. Horton); and Strawbridge Foundation and National Cancer Institute Cancer Core grant CA34196 (The Jackson Laboratory).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Drs. Greg Cox and Eva Eicher for reading the article and making helpful suggestions.

References

Grant support: Cancer Research Foundation of America fellowship (A.M. Dorward); Maine Cancer Foundation grant (A.M. Dorward); American Institute for Cancer Research grant (W.G. Beamer); NIH grants CA88327 (G.A. Churchill and B. Li), AR43618 (W.G. Beamer and L.G. Horton); and Strawbridge Foundation and National Cancer Institute Cancer Core grant CA34196 (The Jackson Laboratory).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Drs. Greg Cox and Eva Eicher for reading the article and making helpful suggestions.
Distal Chr 4 Harbors a Genetic Locus (Gct1) Fundamental for Spontaneous Ovarian Granulosa Cell Tumorigenesis in a Mouse Model

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/65/4/1259

Cited articles
This article cites 35 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/65/4/1259.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/65/4/1259.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link:
http://cancerres.aacrjournals.org/content/65/4/1259.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.