A Role for the WWOX Gene in Prostate Cancer

Haiyan R. Qin, Dimitrios Iliopoulos, Shuho Semba, Muller Fabbri, Teresa Druck, Stefano Volinia, Carlo M. Croce, Carl D. Morrison, Russell D. Klein, and Kay Huebner

Abstract

Expression of the WWOX gene, encompassing the common chromosome fragile site FRA16D, is altered in a large fraction of cancers of various types, including prostate cancer. We have examined expression and biological functions of WWOX in prostate cancer. WWOX mRNA and protein expression were significantly reduced in prostate cancer-derived cells (LNCaP, DU145, and PC-3) compared with noncancer prostate cells (PWR-1E), and WWOX expression was reduced in 84% of prostate cancers, as assessed by immunohistochemical staining. Down-modulation of WWOX expression in the prostate cancer-derived cells is due to DNA hypermethylation in the WWOX regulatory region. Treatment with 5-aza-2-deoxycytidine (AZA) mediated WWOX overexpression in DU145 cells suppressed colony growth (P = 0.0012), and WWOX overexpression by infection with Ad-WWOX virus induced apoptosis through a caspase-dependent mechanism and suppressed cell growth. Lastly, ectopic expression of WWOX by Ad-WWOX infection suppressed tumorigenicity of xenografts in nude mice, and intratumoral AZA treatment halted tumor growth. The data are consistent with a role for WWOX as a prostate cancer tumor suppressor and suggest that WWOX signal pathways should be further investigated in normal and cancerous prostate cells and tissues. (Cancer Res 2006; 66(13): 6477-81)

Introduction

WWOX (WW domain containing oxidoreductase) is a tumor suppressor gene spanning a genomic region of ~1 Mb located at chromosome 16q23.3-24.1, a region with a high incidence of loss of heterozygosity (LOH) in breast, prostate, and other cancers (1–3). WWOX protein contains two WW domains in the NH2-terminal region and a short chain dehydrogenase/reductase (SDR) domain in the central region of the protein; WW domains are involved in protein-protein interactions (4). The WWOX SDR domain has amino acid sequence homology to steroid oxidoreductases, and the WWOX expression level in normal tissues is highest in hormonally regulated tissues, such as testis, prostate, and ovary, suggesting that WWOX may play an important role in hormone-regulated cancers.

Bednarek et al. first reported that ectopic expression of WWOX suppressed breast cancer growth in vitro (5). Consistent with this, we have observed that the expression of WWOX is reduced or lost in breast cancer tissues (6, 7), and Fabbri et al. (8) have shown that Ad-WWOX virus infection of lung cancer cells suppresses xenograft tumorigenicity. The suggestion that the WWOX gene is a target of LOH in prostate cancers and may have a function in hormone-responsive tissues led us to hypothesize that WWOX may function as a tumor suppressor in prostate cancer.

Prostate cancer is the most prevalent noncutaneous cancer and the second leading cause of cancer death in males in the United States. It is a heterogeneous disease, varying from clinically indolent to a rapidly fatal systemic malignancy. It develops to advanced stage in ~25% of patients (9). Androgen ablation remains the primary treatment for advanced prostate cancer, but hormone-refractory prostate cancer recurs invariably within 1 to 2 years (10). At this stage, no therapy has been shown to substantially prolong survival (11). Improved understanding of the molecular mechanisms of prostate cancer development may provide a basis for development of effective treatment strategies.

Extensive research into prostate cancer to date has suggested that numerous molecular abnormalities are involved in prostate cancer development, including chromosomal loss or gain, amplification of oncogenes, and mutation or epigenetic silencing of tumor suppressor genes. In this study, we have investigated the expression of WWOX in prostate cancer cells and tissues and the effect of WWOX restoration on prostate cancer cell growth in vitro and in vivo.

Materials and Methods

Cell culture. LNCaP, DU145, PWR-1E, and PC-3 cell lines were obtained from the American Type Culture Collection (Manassas, VA). LNCaP, DU145, and PC-3 cells were cultured in RPMI 1640 supplemented with 10% fetal bovine serum. PWR-1E cells were maintained in keratinocyte-SFM (Invitrogen Corp., Carlsbad, CA).

In vitro adenoviral transduction. The Ad-WWOX vector was prepared, amplified, and titrated based on manufacturer's instructions (Qbiogene, Carlsbad, CA) and as described previously (8). An Ad-GFP vector served as negative control (Qbiogene). Cells were transduced with Ad-WWOX at appropriate multiplicities of infection (MOI), and transduction efficiency was assessed by visualization of green fluorescent protein–expressing cells using fluorescence microscopy.

Real-time reverse transcription-PCR analysis. Total RNA was isolated using the RNaseasy Mini kit (Qiagen, Chatsworth, CA). BNA (2 μg) was reversed transcribed using SuperScript II (Invitrogen). Real-time PCR was done using SYBR Green PCR Master Mix (Bio-Rad, Hercules, CA) under conditions recommended by the manufacturer, using an iCycler IQ Multicolor Real-time PCR Detection System (Bio-Rad). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as an internal reference control.
primer sequences for WWOX and GAPDH were as described (12, 13). WWOX relative expression was determined by the temperature threshold cycle method, and threshold cycle was automatically estimated by the iCycler.

Immunoblot and immunohistochemistry. Immunoblot and immunohistochemistry analyses were carried out as described (14). The following rabbit polyclonal primary antisera and dilutions were used for immunoblotting: anti-WWOX, 1:20,000 (6); anti-caspase-3 (H-277), 1:500 (Santa Cruz Biotechnology, Santa Cruz, CA); anti-caspase-8 (H-134), 1:500 (Santa Cruz Biotechnology); anti-caspase-9 (H-83), 1:500 (Santa Cruz Biotechnology); and anti-Bcl2 (N-19), 1:500 (Santa Cruz Biotechnology). Rabbit polyclonal anti-WWOX (1:5,000) was used for immunohistochemistry.

Prostate tissue microarray. Formalin-fixed and paraffin-embedded tissue blocks from 44 primary prostate cancer patient samples were used in this study. The prostate tissue microarray was constructed by Department of Pathology, The Ohio State University, (Columbus, OH) using a manual tissue arrayer (Beecher Instruments, Silver Springs, MD). Core samples were retrieved from the selected section in each donor paraffin block and inserted into a receiver paraffin block. The tissue cores are 1.5 mm in diameter, and the arrayed tissue was cut at 4 μm and placed on positively charged slides. Each parallel section was stained with H&E and reviewed to ensure quality control. Immunohistochemical staining was done on the arrayed tissue as described previously (15). WWOX antiserum was used to ensure quality control. Immunohistochemical staining was done on the arrayed tissue as described previously (15).

Western blot. GAPDH served as loading control. Final WWOX protein levels in LNCaP and DU145 were increased after AZA and TSA treatments. Western blotting and immunohistochemistry analyses were carried out as described (14).

Xenograft analysis. DU145 cells (7.5 × 10^5) in 100-mm plates were transfected with 6 μg pcDNA3 vector or pcDNA3-WWOX construct using Fugene 6 (Roche Applied Science, Mannheim, Germany). Twelve hours after transfection, cells were cultured in G418-selective (500 μg/mL) medium for 14 days. Cells were then fixed with methanol and stained with Giemsa (Sigma, St. Louis, MO), and visible colonies ≥0.5 mm were counted.

Cell growth and flow cytometric analysis. To determine the optimal MOI for infection, 1 × 10^5 cells in 60-mm plate, in triplicate, were infected with increasing MOI and counted 7 days after infection using the Viscell counter (Beckman Coulter, Fullerton, CA). For cell growth analysis, 0.5 × 10^6 cells per well in six-well plates were infected with Ad-WWOX or Ad-GFP at 100 MOI and counted at day 0, 1, 3, 5, and 7 using the Viscell counter. Flow cytometry was done as described (14).

Analysis of WWOX methylation status. Genomic DNA extraction, bisulfite treatment, and methylation-specific PCR (MSP) were done using primer sequences for methylated and unmethylated WWOX promoter and exon 1 DNA as reported previously (16). The prostate cancer-derived cells were treated with trichostatin A (TSA; 1 μmol/L) for 24 hours, 5-aza-2'-deoxycytidine (AZA; 5 μmol/L) for 120 hours, or AZA for 120 hours followed by TSA for an additional 24 hours. Then, cells were harvested, and RNA and protein were extracted for real-time reverse transcription-PCR (RT-PCR) and immunoblot analysis, respectively.

Cell transfection and colony assay. DU145 cells (7.5 × 10^5) in 100-mm plates were transfected with 6 μg pcDNA3 vector or pcDNA3-WWOX construct using Fugene 6 (Roche Applied Science, Mannheim, Germany). Twelve hours after transfection, cells were cultured in G418-selective (500 μg/mL) medium for 14 days. Cells were then fixed with methanol and stained with Giemsa (Sigma, St. Louis, MO), and visible colonies ≥0.5 mm were counted.

Cell growth and flow cytometric analysis. To determine the optimal MOI for infection, 1 × 10^5 cells in 60-mm plate, in triplicate, were infected with increasing MOI and counted 7 days after infection using the Viscell counter (Beckman Coulter, Fullerton, CA). For cell growth analysis, 0.5 × 10^6 cells per well in six-well plates were infected with Ad-WWOX or Ad-GFP at 100 MOI and counted at day 0, 1, 3, 5, and 7 using the Viscell counter. Flow cytometry was done as described (14).

Xenograft analysis. DU145 cells were infected with Ad-GFP or Ad-WWOX at 100 MOI. At 48 hours after infection, cells were collected, and...
7 × 10^6 cells were injected into the flanks of 5-week-old female nude mice [National Cancer Institute (NCI), Frederick, MD], five mice per group. Ten control mice were injected with the same number of uninfected DU145 cells. Animals were monitored daily, and tumor sizes were measured every 5 days starting at day 10. When mean tumor volumes for the 10 control mice reached ~100 mm^3 (day 15), AZA treatment of five control mice was initiated. AZA (5.0 mg/kg body weight) in 100 μl PBS was given intratumorally on days 15 and 16 and days 22 and 23. At endpoint (day 35), mice was initiated. AZA (5.0 mg/kg body weight) in 100 μl PBS was given intratumorally on days 15 and 16 and days 22 and 23. At endpoint (day 35), animals were sacrificed, tumors were weighed, and tumor volumes were calculated using the formula \(V = (\text{the shortest diameter})^2 \times (\text{the longest diameter}) \).

Statistical analysis. The differences in values between experimental groups were analyzed using Student’s \(t \) test and one-way ANOVA, where appropriate. Statistical significance was set at \(P < 0.05 \).

Results and Discussion

WWOX mRNA and protein expression are reduced in prostate cancer cells and tissues. Alterations of tumor suppressor genes through deletion or epigenetic modification, leading to reduced expression, have been implicated in prostate cancer development (17). Thus, we examined the expression level of WWOX in prostate cancer-derived cells and found that both mRNA and protein expression were significantly reduced in human prostate cancer cells (Fig. 1A). Prostate-derived noncancer cells, PWR-1E, exhibit 2.2-fold, 4.1-fold, and 19.2-fold higher WWOX expression than in LNCaP, PC-3, and DU145 cells, respectively, as determined by real-time RT-PCR. Protein expression was barely detectable in DU145 cells and was reduced in LNCaP and PC-3 cells compared with PWR-1E cells, which express abundant WWOX.

WWOX protein expression in mouse prostate transgenic adenocarcinoma mouse prostate (TRAMP) tissues was evaluated by immunohistochemistry. In the TRAMP model, mouse prostate carcinogenesis is driven by prostate-specific expression of SV40 early genes, and exposure to chemical carcinogens is not needed for tumor induction (18). Although WWOX was abundantly expressed in normal- to low-grade prostatic intraepithelial neoplasia (PIN) prostate tissue (Fig. 1B, a), WWOX expression was notably reduced in well-differentiated (noninvasive; Fig. 1B, b) and moderately-differentiated (invasive) prostate adenocarcinoma (Fig. 1B, c).

WWOX protein expression was assessed in 44 primary human prostate cancers on a tissue microarray by immunohistochemical analysis. Representative images are shown in Fig. 1C. Similar to mouse prostate tissues, WWOX was highly expressed in adjacent normal human prostate tissues (Fig. 1C, a). Of the 44 tumor cases, WWOX expression was high only in 7 (16%) but low to negative in 37 (84%) cases (data not shown).

WWOX regulatory region is hypermethylated in prostate cancer cells. Although point mutations in WWOX are rare (2), LOH at 16q23 is frequent in several cancer types, and homozygous deletions within the WWOX gene have been reported in breast, prostate, liver, esophageal, and lung cancer-derived cells (1–3). In addition, WWOX expression is down-regulated through hypermethylation in breast and lung cancers (16). The lack of point mutations and dramatically reduced expression of WWOX in prostate cancer led us to hypothesize that epigenetic silencing might contribute to the down-regulation in prostate cancer. The genomic region of WWOX from –183 to +177, spanning the promoter and exon 1, contains the highest percentage of CpG dinucleotides (~70%; ref. 16). We characterized the methylation status within this regulatory region by MSP and found that the WWOX gene was methylated in the three prostate cancer-derived cells but not in the noncancer PWR-1E cells (Fig. 1D). In addition, treatment with TSA, AZA, or the combination of the two drugs led to significant increases of WWOX mRNA expression in the prostate cancer-derived cells, with the most striking increase in DU145 cells followed by LNCaP and PC-3 (Fig. 1D). Correspondingly, WWOX protein expression was elevated following the treatment in DU145 and LNCaP, although the increase in WWOX protein in PC-3 was not as striking, suggesting that other mechanism(s) besides methylation contributes to WWOX down-regulation in this cell line. The finding that WWOX expression was restored after inhibition of methylation in vitro provides a rationale for consideration of epigenetic therapies for analysis of in vivo efficacy.
Ectopic expression of WWOX suppressed prostate cancer cell growth. Because endogenous WWOX expression is highly reduced in prostate cancer, we sought to overexpress exogenous WWOX and to characterize the effect of WWOX restoration in prostate cancer-derived cells. We first transfected DU145 cells with a pcDNA3-WWOX expression construct. Forty-eight hours following transfection, reexpression of WWOX was confirmed by Western blot (Fig. 2A), and a clonogenicity assay was done. Significantly fewer and smaller colonies were formed in pcDNA3-WWOX-transfected cells compared with the vector control ($P = 0.0012$; Fig. 2B and C).

To confirm the role of WWOX in suppressing prostate cancer cell growth, we infected prostate cancer and noncancer cells with Ad-WWOX. Because initial experiments suggested that 100 MOI was sufficient for growth inhibition in prostate cancer-derived cells (Supplementary Fig. S1), cell growth analysis was done after infection with Ad-GFP and Ad-WWOX at 100 MOI. Ad-WWOX, but not Ad-GFP infection, suppressed the growth of the three prostate cancer-derived cell lines but had no apparent effect on noncancer PWR-1E cell growth (Fig. 2D). Growth suppression occurred earliest in LNCaP cells followed by DU145 and PC-3 cells.

Ad-WWOX transduction induced apoptosis in prostate cancer-derived cells. Four days after infection with Ad-GFP and Ad-WWOX at 100 MOI, cells were collected for flow cytometry analysis to assess the sub-G1 population serving as an indicator of cell death. No sub-G1 peak was detected in noninfected control or Ad-GFP-infected cells (Fig. 3A). In contrast, Ad-WWOX infection led to detection of 45.40%, 21.56%, and 25.80% of cells in sub-G1 in LNCaP, DU145, and PC-3 cells, respectively, whereas only 2.71% of cells were in sub-G1 in PWR-1E cells. At 6 days after infection, >60% of LNCaP, DU145, and PC-3 cells were in sub-G1 fraction compared with ~10% in PWR-1E (data not shown). To examine the pathway(s) for Ad-WWWOX-mediated cell death, cells were collected 4 days after infection, and immunoblot analysis was done for detection of apoptosis-related proteins. As shown in Fig. 3B, Ad-WWOX infection resulted in reduced expression of antiapoptotic protein Bcl2 and led to activation of caspase-3 and caspase-9, as indicated by decreased expression of pro-caspase-3 and procaspase-9 in the three prostate cancer cell lines but not in PWR-1E cells, suggesting that the mitochondria-mediated caspase-dependent pathway is involved in Ad-WWOX-induced apoptosis in the prostate cancer-derived cells. In accordance with our findings, Chang et al. (19) showed that WWOX significantly down-regulated apoptosis inhibitors Bcl2 and Bcl-xL in mouse L929 fibrosarcoma cells, and Fabbri et al. found that Ad-WWOX infection led to caspase-dependent apoptosis in lung cancer-derived cells (8). We did not detect an effect of Ad-WWOX infection on procaspase-8 level (data not shown), suggesting that the death receptor–mediated apoptotic pathway is not activated. Ad-WWOX-induced growth suppression occurred earlier in LNCaP cells, and more LNCaP cells underwent apoptosis compared with DU145 and PC-3 cells, possibly due to the effects of functional p53 and Rb in this cell line.

Ad-WWOX suppressed tumorigenicity in nude mice. Because Ad-WWOX transduction inhibited prostate cancer cell growth and induced apoptosis in vitro, we further explored the effect of Ad-WWOX on the growth of prostate cancer-derived cells in vivo. Because LNCaP forms tumors slowly in nude mice (20) and because WWOX mRNA and protein expression were restored most dramatically in DU145 cell line after AZA treatment in vitro, the DU145 cell line was selected for this study. DU145 tumors grew...
was at days 15 and 16 (1st Tx administration) restrained tumor growth: AZA (5 mg/kg body weight) treatment
of tumors in mice inoculated with DU145 cells (uninfected, Ad-GFP, and Ad-WWOX-infected) over a 35-day observation period. AZA intratumoral injection of AZA. Tumor incidence and tumor weight in each group are detailed in the table.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tumor Incidence (%)</th>
<th>Tumor weight (g) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>No infection</td>
<td>5/5 mice (100%)</td>
<td>1.05 ± 0.16</td>
</tr>
<tr>
<td>Ad-GFP</td>
<td>5/5 mice (100%)</td>
<td>0.94 ± 0.13</td>
</tr>
<tr>
<td>Ad-WWOX</td>
<td>2/5 mice (40%)</td>
<td>0.08 ± 0.02</td>
</tr>
<tr>
<td>AZA</td>
<td>3/5 mice (60%)</td>
<td>0.09 ± 0.01</td>
</tr>
</tbody>
</table>

Figure 4. Effect of WWOX restoration on xenograft growth. Ad-WWOX transduction suppressed tumorigenicity of xenografts in nude mice: growth of tumors in mice inoculated with DU145 cells (uninfected, Ad-GFP, and Ad-WWOX-infected) over a 35-day observation period. AZA intratumoral injection of AZA. Tumor incidence and tumor weight in each group are detailed in the table.

Acknowledgments
Received 3/15/2006; revised 4/28/2006; accepted 5/12/2006.

Grant support: USPHS NCI grant CA77738 (K. Huebner) and CA091865 (R.D. Klein), Breast Cancer Program from Department of Defense grant BC043090 (D. Iliopoulos), and funds from The Ohio State University Comprehensive Cancer Center.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

References

www.aacrjournals.org 6481 Cancer Res 2006; 66: (13). July 1, 2006
A Role for the WWOX Gene in Prostate Cancer

Haiyan R. Qin, Dimitrios Iliopoulos, Shuho Semba, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/66/13/6477

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2006/07/12/66.13.6477.DC1

Cited articles
This article cites 19 articles, 9 of which you can access for free at:
http://cancerres.aacrjournals.org/content/66/13/6477.full#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/66/13/6477.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link:
http://cancerres.aacrjournals.org/content/66/13/6477.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.