








Long-term efficacy of lapatinib against HER-2-overexpress-
ing breast carcinoma xenografts in vivo . Earlier studies have
shown that 21-day twice daily dosing with lapatinib resulted in
near complete inhibition of growth at 100 mg/kg and interme-
diate inhibition when dosed at 30 mg/kg (22). To confirm and
further extend these observations, we studied the long-term
in vivo effect of lapatinib against HER-2-overexpressing human
breast cancer xenografts (Fig. 3). Lapatinib was given over 77 days
at a dose of 75 mg/kg twice daily. At day 21, tumor volumes in
mice that received 75 mg/kg twice daily were significantly smaller
than the volumes in mice that received a vehicle control (P <
0.001). Moreover, this difference remained statistically significant
for the entire duration of the experiment. Tumor volumes in mice
that received 75 mg/kg lapatinib twice daily for 77 days were
significantly smaller than those of mice treated with vehicle
control for 21 days (P = 0.002). At day 64, however, 4 animals had
reached a tumor volume of >1,000 mm3, indicating that despite
extended suppression of tumor growth in the majority of animals
development of resistance did occur in individual tumors. The
remaining 12 of 16 animals, nevertheless, had a median tumor
burden of 303 mm3 at day 64 compared with an initial median
tumor volume of 244 mm3.
Lapatinib in trastuzumab-conditioned HER-2-overexpress-

ing breast cancer cells. The growth-inhibitory effects of lapatinib
were evaluated in the trastuzumab-conditioned sublines BT474/
mAbHER-2, SK-BR-3/mAbHER-2, and MDA-MB-361/mAbHER-2.
For this purpose, the HER-2-overexpressing breast cancer cell lines
BT474, SK-BR-3, and MDA-MB 361 cells were continuously grown
in culture medium supplemented with 100 Amol/L trastuzumab
over a time period of at least 9 months. The dose of 100 Ag/mL
trastuzumab was chosen because clinical trials in humans have
shown trough concentrations of f20 Ag/mL and peak plasma
concentrations of 185 Ag/mL (33). Trastuzumab significantly
inhibited growth of HER-2-overexpressing BT474 (P < 0.001),
SK-BR-3 (P < 0.001), and MDA-MB-361 cells (P < 0.001) when
compared with untreated controls but much less than lapatinib
(Fig. 4A). Trastuzumab showed no growth-inhibitory effect on the
trastuzumab-conditioned sublines BT474/mAbHER-2 (P = 0.34)
and MDA-MB-361/mAbHER-2 (P = 0.35) when compared with

untreated controls and showed less growth inhibition in SK-BR-3/
mAbHER-2 when compared with untreated controls (P = 0.03;
Fig. 4B). In contrast, lapatinib retained significant activity in the
trastuzumab-conditioned sublines BT474/mAbHER-2 (P < 0.001),
SK-BR-3/mAbHER-2 (P < 0.001), and MDA-MB-361/mAbHER-2
(P < 0.001) when compared with untreated controls (Fig. 4B).
Combination of lapatinib and trastuzumab. We next

analyzed the combination of lapatinib and trastuzumab in HER-
2-overexpressing breast cancer cells. Multiple drug effect analysis
was done using four HER-2-overexpressing established human
breast cancer cell lines to determine the nature of the interaction
between lapatinib and trastuzumab (synergy, addition, or antago-
nism). The drug concentrations used for these experiments ranged
between 0.039 and 5.0 Amol/L for lapatinib and 0.31 and 4.0 Ag/mL
for trastuzumab and were below the reported peak plasma
concentrations achievable in humans for both drugs (33, 34).

Figure 2. Cell cycle analysis of BT474 cells treated with lapatinib. Cells were treated for 24 hours with vehicle (DMSO) or lapatinib at the concentrations indicated. Cells
were analyzed by flow cytometry after propidium iodine staining. The cell cycle profile was estimated by gating histograms generated with the FL2-area variable.

Figure 3. Tumor growth curves show the mean tumor volume as a function of
time. Tumor fragments were implanted into immunocompromised mice. After
establishment of tumors, animals were treated p.o. for 77 days on a twice daily
schedule with lapatinib at the concentration indicated. Tumors were measured
with electronic calipers. *, P < 0.001, at day 21, tumor volumes in mice that
received 75 mg/kg lapatinib twice daily were significantly smaller than tumor
volumes in mice that received a vehicle control. *, P = 0.002, this difference
remained statistically significant for the entire duration of the experiment as
volumes in mice that received 75 mg/kg lapatinib twice daily for 77 days were
significantly smaller than those in mice treated with vehicle control for 21 days.
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In vitro the two agents showed consistent strong synergistic
interactions against all four cell lines with mean CI values of 0.34 F
0.02 (P < 0.001) in SK-BR-3 cells, 0.40 F 0.07 (P < 0.001) in MDA-
MB-453 cells, 0.57 F 0.85 (P < 0.001) in MDA-MB-361, and 0.66 F
0.10 (P < 0.001) in BT474 cells (Fig. 4C).
Effects of lapatinib on HER-2 and EGFR signaling. Exposure

of SK-BR-3 and BT474 human breast cancer cells to lapatinib
resulted in a dose- and time-dependent reduction of phosphory-
lation of EGFR, HER-2, AKT, and ERK (Fig. 5A and B). We next
examined the effect of lapatinib on HER-2 and EGFR receptor
phosphorylation both with and without prior exposure to heregulin
h1 (Fig. 5C and D). Heregulin h1 is a growth factor ligand cloned
based on its ability to induce tyrosine phosphorylation of HER-2
through the formation of HER-2/HER-3 and/or HER-2/HER-4
heterodimeric complexes (1, 4). In HER-2-overexpressing breast
cancer cell lines (SKBR3 and UACC-893), which constitutively
express an activated HER-2 tyrosine kinase, heregulin h1 does not
further increase HER-2 phosphorylation, indicating that this
receptor is being maximally activated in these cell lines at baseline
(35). The data indicate that heregulin h1 does not interfere with the
ability of lapatinib to reduce HER-2 phosphorylation in either cell

lines with constitutive HER-2 tyrosine phosphorylation or cell lines
with increased HER-2 tyrosine phosphorylation following exposure
to heregulin h1 (Fig. 5C). We next studied the ability of lapatinib to
block HER-2 and EGFR receptor phosphorylation both with and
without prior exposure to transforming growth factor-a (TGF-a),
which is a native ligand of the EGFR. As expected, treatment with
TGF-a strongly stimulated EGFR phosphorylation (Fig. 5D), but
lapatinib consistently decreased EGFR phosphorylation back to
basal levels. Importantly, however, basal EGFR phosphorylation
following exposure to TGF-a and subsequent treatment with
lapatinib were higher compared with EGFR phosphorylation levels
following lapatinib treatment without exposure to TGF-a. These
findings indicate that lapatinib did not completely inhibit
phosphorylation of EGFR following stimulation with TGF-a. On
ligand binding, the EGFR can form heterodimeric complexes with
neighboring HER-2 receptors (36, 37) and transactivate HER-2. As
expected, TGF-a induced HER-2 tyrosine phosphorylation in breast
cancer cells without constitutive HER-2 phosphorylation (Fig. 5C).
Consistent with heregulin h1 data, TGF-a-induced transactivation
of HER-2 did not reverse the inhibitory effects of lapatinib on the
HER-2 tyrosine kinase (Fig. 5C).

Figure 4. Growth-inhibitory effects of lapatinib were compared between established (A) and trastuzumab-conditioned (B ) human breast cancer cell lines. Trastuzumab
conditioned cell lines SK-BR-3/mAbHER-2, BT474/mAbHER-2, and MDA-MB-361/mAbHER-2 were generated by culturing cells for at least 9 months in RPMI
1640 supplemented with 100 Ag/mL recombinant humanized monoclonal HER-2 antibody (mAbHER-2) trastuzumab. Trastuzumab was removed from the medium
24 hours before the experiments in the trastuzumab-conditioned cell lines. Cells were treated with either 5 Amol/L lapatinib or 100 Ag/mL trastuzumab for 7 days.
Percent cell viability was calculated compared with untreated controls. Trastuzumab significantly inhibited growth of HER-2-overexpressing BT474 (P < 0.001),
SK-BR-3 (P < 0.001), and MDA-MB-361 (P < 0.001) cells when compared with untreated controls but much less than lapatinib. Trastuzumab showed no or less
growth-inhibitory effect on the trastuzumab-conditioned sublines BT474/mAbHER-2 (P = 0.34), SK-BR-3/mAbHER-2 (P = 0.03), and MDA-MB-361/mAbHER-2
(P = 0.35) when compared with untreated controls, whereas lapatinib retained significant activity in the trastuzumab-conditioned sublines BT474/mAbHER-2
(P < 0.001), SK-BR-3/mAbHER-2 (P < 0.001), and MDA-MB-361/mAbHER-2 (P < 0.001) when compared with untreated controls. Bars, SE. *, significantly different
percentages of cell viability compared with untreated controls. C, mean CI values for chemotherapeutic drug-trastuzumab combinations in four different human
breast cancer cell lines. CI values were derived from variables of the median effect plots, and statistical tests were used to determine whether the CI values at multiple
effect levels (IC20-IC90) were statistically significantly different from CI values equal to 1. CI values that are statistically significantly less than 1 indicate synergistic
interactions. CI values that are statistically significantly greater than 1 indicate antagonistic interactions. CI values equal to (or not statistically significantly different
from 1) indicate additive interactions. Bars, SE. Mean is derived from three replicates spanning clinically relevant concentration ranges sufficient to inhibit growth of
control cells by 20% to 90%. *, statistically significantly less than 1 (synergistic interactions).
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Correlation between receptor signaling and in vitro
response to lapatinib. We investigated whether the in vitro
activity of lapatinib was associated with its ability to inhibit baseline
activity (phosphorylation) of HER-2, EGFR, and the key signal
transduction mediators of the HER-1/HER-2 pathways, such as
AKT, Raf, and ERK (Fig. 6A). To quantitate EGFR and HER-2
receptor activity, we did immunoprecipitations and Western
blotting to detect phosphorylated EGFR or HER-2. Additional
statistical analysis comparing EGFR and HER-2 receptor phosphor-
ylation with in vitro sensitivity to lapatinib (IC50s) reveals that the
level of phosphorylated HER-2 inhibition was inversely correlated
with the IC50s (r = �0.47, P = 0.043); however, a significant
correlation was not seen for inhibition of EGFR phosphorylation
(r = �0.35, P = 0.139; Fig. 6B).
We further evaluated the phosphorylation status of AKT, Raf,

and ERK using phosphospecific primary antibodies (Fig. 6A). AKT
phosphorylation has been linked to inhibition of apoptosis, thus
enhancing cell survival (38). In addition, mitogenic signals
transduced through growth factor receptors ultimately also
converge on the common downstream effectors Raf and subse-
quently ERK (39). When studying the panel of breast cancer cell
lines, inhibition of pRaf (r = �0.65. P = 0.003), pAKT (r = �0.78, P <

0.001), and pERK (r = �0.78, P < 0.001) was significantly inversely
correlated with the IC50s (Fig. 6B).

Discussion

Dual kinase inhibition directed against EGFR and HER-2 kinases
is an attractive potential approach for treatment of breast cancer,
as HER-2 and EGFR expression have both been reported to be
dysregulated in breast cancer (1). Lapatinib inhibits the purified
HER-2 and EGFR tyrosine kinase at nanomolar concentration in cell-
free biochemical assays and effectively inhibits EGFR and HER-2
phosphorylation as well as tumor cell growth at comparably low
nanomolar concentration in selected cell lines with constitutive
activity of either HER-2 or EGFR (22). Evaluation of the antiprolifer-
ative effect of lapatinib in our panel of breast cancer cell lines,
however, indicates that the efficacy of the dual kinase inhibitor
does differ widely between individual cell lines that express different
levels of HER-2 and EGFR. This variability underscores the need to
evaluate multiple cell lines to determine the therapeutic potential of
lapatinib for breast cancer treatment. The current data show that
lapatinib is more potent in inhibiting cell growth in human breast
cancer cell lines that overexpress HER-2 compared with those which

Figure 5. Dose-dependent (A ) and time-dependent (B) activity of lapatinib on HER-2, EGFR, AKT, and ERK phosphorylation in SK-BR-3 and BT474 cells. Both
cell lines were treated with increasing doses of lapatinib (0.2-20 Amol/L) for 1 hour (A) or for increasing duration (B ; 10-60 minutes) with 2 or 0.2 Amol/L lapatinib.
Immunoprecipitation and Western blotting to detect phosphorylated HER-2 or EGFR were done as described in Materials and Methods. ERK and AKT phosphorylation
levels were detected using phosphospecific ERK and AKT antibodies as described in Materials and Methods. Effect of heregulin h1 and TGF-a on the activity of
lapatinib on HER-2 (C ) and EGFR (D ) receptor phosphorylation. Cells in log-phase growth were treated with 5 Amol/L lapatinib or vehicle control (DMSO) for 1 hour
before cell lysis. Cells were stimulated with ligand (10 nmol/L TGF-a or 5 nmol/L heregulin h1) 10 minutes before cell lysis. Immunoprecipitation and Western blotting
to detect phosphorylated EGFR or HER-2 were done as described in Materials and Methods.
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express high levels of EGFR or low levels of either receptor. Despite
comparable biological inhibitory activity of lapatinib on both EGFR
and HER-2 tyrosine kinases, the growth-inhibitory effect of lapatinib
in human breast cancer cells seems to track more closely with its
anti-HER-2 effects.
The association between HER-2 overexpression and increased

response to lapatinib was substantiated using a panel of paired
control- and HER-2-transfected cells. This pairing of isogenic
parent/daughter cells allows us to isolate HER-2 expression as a
variable and directly assess the biological consequences of its over-
expression on lapatinib response. These data confirm that breast
cancer cells with HER-2 overexpression are significantly more
sensitive to lapatinib compared with control cell lines in vitro .
Moreover, our studies indicate that inhibition of tyrosine phos-
phorylation of HER-2, Raf, AKT, and ERK were also significantly
associated with in vitro response to lapatinib, suggesting that these
may also be useful markers to predict response to this molecule.
This will, however, require confirmation in prospective clinical
trials.
To further validate the activity of lapatinib in HER-2-over-

expressing breast cancer cells, parallel in vitro studies were
conducted measuring the fragmentation of genomic DNA into
sub-2N DNA (sub-G1 DNA), generally considered a hallmark of

apoptosis, following treatment with lapatinib at concentrations of
0.1 and 0.5 Amol/L. Our results are consistent with the findings of
previous studies that have shown that HER-2-overexpressing cells
undergo apoptosis following treatment with lapatinib at higher
concentrations of 1 and 10 Amol/L (22). We further showed that
lapatinib given over 21 days at doses of 75 mg/kg twice daily nearly
completely inhibits the growth of HER-2-overexpressing human
breast cancer cells in vivo using the BT474 xenograft model.
Moreover, our results of long-term in vivo treatment indicate that
extended dosing of lapatinib over 77 days results in statistically
significant suppression of tumor growth over the entire duration of
the experiment.
Although it may be tempting to establish a parallel between

agents inhibiting EGFR and agents inhibiting HER-2, the biology of
EGFR is quite different from HER-2. EGFR is commonly expressed
in breast cancer (40), but higher levels of expression per se do not
define ‘‘EGFR-driven’’ tumors, as the effect of EGFR inhibitors is
not well correlated with the levels of EGFR expression (41) and
EGFR levels do not correlate with evidence of EGFR activation (42).
However, in addition to its function as an individual receptor, EGFR
may play an important role as a coreceptor for HER-2 (43). The
cooperation that exists between EGFR and HER-2 provides a sound
rationale to target EGFR particularly when HER-2 is overexpressed.

Figure 6. Comparison of the effect of
lapatinib on baseline activity of HER-2,
EGFR, Raf, AKT, and ERK (A). Cell lines
are ordered from low to high IC50s
(top to bottom ). Cells in log-phase growth
were treated with 5 Amol/L lapatinib or
vehicle control (DMSO) for 1 hour before
cell lysis. Immunoprecipitation and
Western blotting to detect phosphorylated
EGFR or HER-2 were done as described
in Materials and Methods. Raf, ERK,
and AKT phosphorylation levels were
determined using polyclonal anti-pRaf-1
(Ser388), anti-pAKT (Ser473), and
anti-pERK (Tyr202/Tyr204) antibodies.
The blots were incubated with a
fluorescein-linked secondary antibody
and detection was done by enhanced
chemifluorescence (Typhoon 9400).
Equal loading and exposure time were
controlled for by measuring and
comparing the tubulin content per
sample. B, correlations between IC50s
and percent reduction of baseline HER-2,
EGFR, Raf, AKT, and ERK
phosphorylation. Quantitation of
immunoblots was done by densitometry
using the ImageQuant software.
Correlations were analyzed by calculation
of the nonparametric Spearman’s rho
correlation coefficient. All statistical tests
are two sided.
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The pure EGFR tyrosine kinase inhibitor gefitinib inhibits the
growth of HER-2-overexpressing BT474, SKBR-3, and MDA-361
human breast cancer cells at low micromolar drug concentrations
(17, 18). These effects may be due to inhibition in the trans-
activation of EGFR (rather than direct inhibition of HER-2). The
cooperation that exists between EGFR and HER-2 may, however,
also limit the success of agents that target individual receptors.
Preclinical studies have shown that the antiproliferative activity
of a HER-2 antibody can be decreased by the presence of ligand
for the EGFR (44). In return, the activity of this HER-2 antibody
can be restored by a tyrosine kinase inhibitor with dual activity
against EGFR and HER-2 (44). Thus, simultaneous inhibition of
different receptors may constitute a superior way of correcting a
dysregulated signaling network.
To determine how best to use lapatinib either as a single agent or

in combination with trastuzumab, we conducted a series of in vitro
studies to evaluate its inhibitory effects in combination with
trastuzumab. These preclinical studies have shown significantly
enhanced activity when trastuzumab is combined with lapatinib
in HER-2-positive breast cancer cells. At present, reasons for this
synergy are unclear. A detailed analysis of HER-2 receptor
phosphorylation following short treatment of SK-BR-3 and BT474
cells with trastuzumab, however, reveals a moderate increase of
HER-2 tyrosine phosphorylation by trastuzumab treatment (45).
Such an initial stimulatory effect of trastuzumab on HER-2
phosphorylation is in contrast to the pronounced immediate
inhibitory effect of lapatinib on HER-2 phosphorylation as shown
above in our studies (Fig. 5B). Thus, it may be possible that

trastuzumab may initially sensitize cells to treatment with
lapatinib. Furthermore, a recent study has indicated that
combining lapatinib with trastuzumab enhances apoptosis in
HER-2-overexpressing breast cancer cells (46). Regardless of the
mechanism(s) of in vitro synergy, the current data indicate a
consistent synergistic interaction between trastuzumab and
lapatinib across all cell lines tested and clearly support further
clinical evaluation of these agents in a combined regimen (47).
Such strategies in the clinical setting could add more effective
inhibition of the receptor tyrosine kinase to an additional
important mechanism of action of trastuzumab thought to occur
through immune effector cells (48).
In the current study, we were able to show activity of lapatinib

against cells selected for long-term growth in trastuzumab-
containing medium. These findings suggest non-cross-resistance
between these two HER-2-directed agents and underscore the
importance of current clinical trials evaluating lapatinib in
trastuzumab-refractory breast cancer (49).
Taken together, our findings provide a rationale for clinical trials

of lapatinib as a single agent or in combination with trastuzumab
in HER-2-overexpressing breast cancer and suggest the potential of
clinical activity in patients with resistance to trastuzumab.
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