
















The sequence of hepatocellular alterations in the BB/Pfd rats,
beginning with the early formation of CCF even a few days after islet
transplantation and progressing partly via mixed cell foci and
basophilic cell foci to HCAs and HCCs, was qualitatively and
quantitatively not different from our previous results (19–25). In the
beginning, CCF were always confined to the anatomic borders of the
liver acini that drain the hyperinsulinemic blood from the islet
grafts. Moreover, all metabolic andmorphologic alterations, without

exception, are typical insulin effects, and we showed increased
intracellular insulin signaling in these cells via IRS-1 and the Ras-
Raf-MAPK pathway. Thus, CCF must be interpreted as adaptive
alterations resulting from increased insulin action, although minor
additional effects of other islet hormones cannot be ruled out. This
is also corroborated by the fact that these alterations in preneo-
plasias and the subsequent development into hepatocellular tumors
only took place in the right part of the liver in which the islet

Figure 4. Morphology of transplanted islets (A-F), islet grafts during rejection (G-I), and development of insulinomas (J-L). After high-number islet transplantation and
resulting normogylcemia, the transplants remained more compact (CG2 in A; CG7 not shown), whereas after low-number transplantation (MG in B-F) the islet cells
intermingled with the liver parenchyma (B). Activated h-cells showed degranulation and hyperplasia of smooth endoplasmic reticulum and Golgi fields in electron
microscopy (C). Note the atrophy of the a-cell, packed with electron-dense secret granules (top right part of C). D to F, the same lesion showing an islet graft
surrounded by a CCF of altered hepatocytes (E and F, insulin immunostain). In CG 1 (G and I) and CG 3 (H), mononuclear inflammatory infiltrates and rejection of the
islets were visible. H, an insulin immunostain showing a few h-cells during rejection. I, a fibrotic scar marks the former place of a rejected islet in the center of a
glycogenotic CCF (note strong PAS reactivity in the surrounding hepatocytes); thus, this CCF persists without depending on continuing insulin action. Insulinomas
occurred only in MG and CG 6. The h-cells of the transplanted islets in these groups proliferated until the animal became normoglycemic at 10 months or later.
Then, single large islets were visible (J). In single animals, these large islets continued to proliferate and secrete insulin, resulting in the formation of insulinomas
and severe hypoglycemia (K and L show the same insulinoma). A, B, and G, semithin sections stained according to Richardson; C, electron micrograph of an ultrathin
section; D and K, unstained liver slices; E, F, H, and L, insulin immunostain; I and J, PAS stain. Time after transplantation and length of the lower edge of the panel:
A, 13 months, 360 Am; B, 9 months, 360 Am; C, 5 months, 9.6 Am; D-F (same lesion), 11 months, D, 3.6 mm, E, 2.9 mm, F, 570 Am; G, 8 months, 360 Am;
H, 1 month, 280 Am; I, 13 months, 360 Am; J, 13 months, 1.1 mm; K and L (same lesion), 14 months, K, 14.5 mm, L, 1.1 mm.
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grafts were transplanted. Similar to streptozotocin diabetic Lewis
rats, preneoplastic CCF virtually did not develop in animals after
high-number islet transplantation, which fully compensates the
diabetic state and establishes normoglycemia, illustrating that
hyperglycemia is also of relevance for tumor development. However,
even high-number islet transplantation in conjunction with
normoglycemia has at least cocarcinogenic potential, as it strongly
promotes hepatocarcinogenesis in Lewis rats, initiated by admin-
istration of the hepatocarcinogen N-nitrosomorpholine (26),
indicating a dose-dependent effect of insulin and glucose levels.
Preneoplastic foci did not regress in late-stage animals of the MG or
CG 6 that became normoglycemic or even hypoglycemic owing to
excessive insulin production by hyperplastic transplants or graft
insulinomas, which corroborates similar observations formerly
made in Lewis rats (45). However, a new and interesting finding was
that CCF also did not regress in animals of CG 1, which showed a
rejection of islet grafts after several months of tolerance and local
hyperinsulinism (Fig. 1I and 4I). These observations clearly indicate
that at this time point, the primary adaptive nature of these CCF has
already changed and that neoplastic transformation no longer
depends on insulin action. In this context, the overexpression of
other tumorigenic growth factors or their receptors, such as TGF-a,
which has been shown to promote hepatocarcinogenesis in
transgenic mice (46, 47), in the late stage lesions and neoplasms
of the present model is interesting. The point of transformation of
the purely adaptive alterations of the liver acini into genetically or,
probably initially more likely, epigenetically fixated preneoplasias
that did no longer spontaneously regress must lie between 3 and 12
months after transplantation. The clarification of this important
biological alteration and the underlying mechanisms is one of the
most interesting aims for future studies.
To the best of our knowledge, no detailed histopathologic

studies of human recipient livers in clinical islet transplantation
have been done nor has the occurrence of hepatocellular neo-
plasms been reported. However, Hirshberg et al. (48) conducted
a histopathologic study of livers in a nonhuman primate model
and showed glycogenotic CCF, which only developed in one
single animal that was insufficiently treated by a too low num-
ber of functioning islet grafts and that stayed hyperglycemic.
Histologic reports in humans generally deal with the islet graft
morphology and do not describe the liver morphology in detail
(8). However, there are a few recent single case reports or small

series of cases that describe focal, mostly steatotic, or glyco-
genotic alterations in the livers of islet transplant recipients
that are strikingly similar to our observations (5–7, 49). The
macroscopic descriptions and the histopathologic depictions of
these alterations, as well as the clinical data (recurrence of hyper-
glycemia, high fasting glucose levels) in these patients, are virtually
identical to the alterations seen in our rats, illustrating obvious
similarities in the metabolic situation and its influence on the
hepatocytes in our model and in a group of clinically transplanted
patients.
The increased incidence of HCC in human diabetic patients

reported in epidemiologic and case-control studies is not well
understood. We suggest, although not always being clearly stated,
that these patients are suffering from type 2 diabetes mellitus,
which is usually characterized by hyperglycemia and hyper-
insulinemia. On the one hand, the metabolic situation in these
patients is similar to that in the altered liver acini of our model
and some researchers have indeed proposed that insulin and
glucose may directly be involved in the carcinogenic process in
humans (11, 14). On the other hand, the occurrence of
hepatocellular CCF in human livers that resemble preneoplastic
CCF known from a variety of animal models has been shown (50),
and even indications for their involvement in human hepatocarci-
nogenesis have been found (51). Therefore, our results may help to
understand how the combination of insulin action with the
diabetic state can alter the expression of growth factors and their
receptors, intracellular signaling, enzyme activities, morphology,
and proliferative activity of hepatocytes, thus inducing and/or
promoting hepatocarcinogenesis. In addition, they may also help
to explain the increase in HCC incidence in human type 2 diabetic
patients and warrant a careful observation of liver alterations in
patients having undergone clinical islet transplantation.
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