Splicing Factor Tra2-β1 Is Specifically Induced in Breast Cancer and Regulates Alternative Splicing of the CD44 Gene

Dirk O. Watermann, Yesheng Tang, Axel zur Hausen, Markus Jäger, Stefan Stamm, and Elmar Stickeler

Departments of Obstetrics and Gynecology, and Pathology, University of Freiburg, Freiburg, Germany and Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany

Abstract

The human CD44 gene undergoes extensive alternative splicing of multiple variable exons positioned in a cassette in the middle of the gene. Expression of alternative exons is often restricted to certain tissues and could be associated with tumor progression and metastasis of several human malignancies, including breast cancer. Exon v4 contains multiple copies of a C/A-rich exon enhancer sequence required for optimal inclusion of the exon and binding to the nucleic acid–binding proteins YB-1 and human Tra2-β1. Here, we show that hTra2-β1, a member of the extended family of serine/arginine-rich (SR) splicing factors, enhances the in vivo inclusion of CD44 exons v4 and v5. It increased inclusion of exons v4 and v5 and acted synergistically with YB-1. Activation required the C/A-rich enhancer within exon v4. Several other SR proteins had none or only a slight effect on CD44 exon inclusion. In contrast, SC35 inhibited exon usage and antagonized the effects of Tra2 or YB-1. In a matched pair analysis of human breast cancers and their corresponding nonpathologic tissue controls, we found a significant induction of Tra2-β1 in invasive breast cancer, both on the RNA and protein levels. Together with our functional data, these results suggest an important role for Tra2-β1 in breast cancer. Induction of this splicing factor might be responsible for splicing of CD44 isoforms associated with tumor progression and metastasis. (Cancer Res 2006; 66(9): 4774-80)

Introduction

Alternative pre-mRNA splicing is emerging as an important mechanism of genetic diversity (1–3). Recent microarray data show that 74% of human genes undergo alternative splicing, which generates different protein isoforms (4). This importance of splicing is underlined by the increasing number of diseases associated with missplicing. These events can be caused by either mutations in regulatory sequences, such as splice sites, branch point, and enhancer/silencer sequences, or alterations in trans-acting factors (5, 6). Changes in splice site selection have been frequently observed in cancer (e.g., MDM2, Bin1, and FGFR-2 genes in breast, skin, and prostate cancers; refs. 7–10).

A striking example for changes in alternative splicing due to tumorigenesis is CD44. Human CD44 is able to produce several hundred functional mRNAs through the combinatorial inclusion of one or multiple in-frame alternative exons (11–13).

Considerable attention has focused on CD44 variable exons v4 through v6 because the inclusion of these exons has been shown to correlate with both tumorigenesis and metastasis (14, 15) of several malignancies, including breast cancer (16). Molecularly, we know the most about the sequences and factors involved in the recognition of variable exons v4 and v5. Exon v5 contains both splicing enhancer and silencing elements (17–19).

Exon v4 (Fig. 1A) has several copies of a C/A-rich sequence (Fig. 1B) known to be a strong exon enhancer (20–23). We have shown previously that this sequence binds the single-stranded RNA and DNA-binding protein YB-1 (24). Increased YB-1 concentration induces exon v4 as well as exon v5 inclusion. The effect depends on the presence of the C/A-rich exon enhancer within exon v4 (24).

The best characterized C/A-rich exon enhancers are from the Drosophila doublesex gene. Multiple repeats of consensus sequence UCUCUAUAACA (dsxRE) are located within the female-specific exon and bind dTra, dTRA2, and serine/arginine-rich (SR) proteins (25–31). Exon v4 also contains another enhancer element of the sequence AAAGCACAAGGACAAAA (dsxPRE) that binds dTRA2 and is required for maximal exon recognition (30, 31).

In humans, two orthologues of dTRA2 exist, hTRA2-β1 and hTRA2-α (32, 33). In vivo, TRA2α and TRA2-β1 were shown to influence splice site selection by interacting with GAGAA-rich enhancers (34–36). Recently, the binding sequence of TRA2-β1 was determined in vivo and found to contain considerably more pyrimidines than determined by in vitro analyses (37). This binding site GHVVGARN is present in exon v4 (Fig. 1B).

CD44 exons v4 and v5 contain both C/A- and purine-rich enhancer. The characterized important C/A-rich enhancer within exon v4 is similar to both the dsxRE and the dsxPRE (Fig. 1B). Exon v5 contains a 12-nucleotide purine-rich enhancer with a GAGAA sequence similar to the binding site of human TRA2-β1. Furthermore, it contains one copy of the TRA2-β1-binding motif determined in vivo (37). The structure of the CD44 exons v4 and v5 suggested that hTRA2-β1 might influence splicing of these exons.

Deregulation of hTRA2-α and hTRA2-β has been observed in several pathologic conditions [e.g., stroke (38, 39), atherosclerosis (40), nerve injury (41), and silicosis (42)]. We therefore wondered whether TRA2-α and TRA2-β expression changes in cancer. Recently, we showed in a model of breast cancer development a stage-dependent induction of alternative CD44 mRNA splicing, which was accompanied by an increase of distinct SR proteins in tumors and their metastasis (16). To test whether the molecular properties of TRA2-β1 are relevant in an oncologic context, we analyzed TRA2-β1 expression in invasive human breast cancer together with matched pairs of nonpathologic tissue specimen. We found that TRA2-β1 is significantly up-regulated in breast cancer, which could explain some of the observed changes in alternative splicing patterns.
Materials and Methods

Plasmids and transfections. The wild-type and mutant CD44 minigenes used to study exons v4 and v5 inclusion have been described previously (24). In vivo splicing phenotypes were determined following transfection of this minigene into HeLa cells after 48 hours of transfection. Low cycle (15-20 cycles) of reverse transcription-PCR (RT-PCR) amplification of total cell RNA using radiolabeled primers specific for β-globin exons flanking the CD44 variable exons was used to determine exon inclusion levels. The RT-PCR protocol used has been shown to faithfully represent the relative amounts of RNA containing or missing exons v4 and v5 (24). When cDNAs representing the two products of the alternative splicing reactions were transcribed in varying ratios, the RT-PCR amplification assay used detected relative amounts of produced RNA directly reflective of input DNA ratios, indicating both that the assay is linear and that there is no pronounced RNA stability difference between the two spliced products.

Tissues. Archived fresh-frozen samples of patients with primary invasive adenocarcinomas of the breast and matched pairs of surrounding nonpathologic tissue were analyzed for their Tra2-β1 expression profile. Samples were initially taken during breast conserving surgery or mastectomy in women diagnosed with breast cancer without prior primary systemic therapy. The local pathologist did in all cases the diagnosis of invasive tumor and corresponding nonpathologic tissue with the fresh-frozen section technique. Patients gave informed consent before the operation, and tissue collection was approved by the local ethic committee of the University of Freiburg (Freiburg, Germany). All tissue specimen were frozen in liquid nitrogen and stored at −80°C until further analysis. Invasive tumor and corresponding nonpathologic tissue with the fresh-frozen section technique. Patients gave informed consent before the operation, and tissue collection was approved by the local ethic committee of the University of Freiburg (Freiburg, Germany). All tissue specimen were frozen in liquid nitrogen and stored at −80°C until further analysis. Invasive tumor and corresponding nonpathologic tissue with the fresh-frozen section technique. Patients gave informed consent before the operation, and tissue collection was approved by the local ethic committee of the University of Freiburg (Freiburg, Germany). All tissue specimen were frozen in liquid nitrogen and stored at −80°C until further analysis. Invasive tumor and corresponding nonpathologic tissue with the fresh-frozen section technique. Patients gave informed consent before the operation, and tissue collection was approved by the local ethic committee of the University of Freiburg (Freiburg, Germany). All tissue specimen were frozen in liquid nitrogen and stored at −80°C until further analysis. Invasive tumor and corresponding nonpathologic tissue with the fresh-frozen section technique. Patients gave informed consent before the operation, and tissue collection was approved by the local ethic committee of the University of Freiburg (Freiburg, Germany). All tissue specimen were frozen in liquid nitrogen and stored at −80°C until further analysis. Invasive tumor and corresponding nonpathologic tissue with the fresh-frozen section technique. Patients gave informed consent before the operation, and tissue collection was approved by the local ethic committee of the University of Freiburg (Freiburg, Germany). All tissue specimen were frozen in liquid nitrogen and stored at −80°C until further analysis. Invasive tumor and corresponding nonpathologic tissue with the fresh-frozen section technique. Patients gave informed consent before the operation, and tissue collection was approved by the local ethic committee of the University of Freiburg (Freiburg, Germany). All tissue specimen were frozen in liquid nitrogen and stored at −80°C until further analysis.

...
In contrast, cotransfection with the related SR protein ASF/SF2 had little to no effect on CD44 alternative splicing with an inclusion of both exons from 19.5 to 65 ± 4.74% (mean ± SD; Fig. 2C). In contrast, cotransfection with the related SR protein ASF/SF2 had little to no effect on CD44 alternative splicing with an induction of exons v4 and v5 inclusion up to 31.6 ± 3.48% (Fig. 2B and C).

In Drosophila, dTra2 works in concert with dTra to activate the C/A-containing doublesex exon. Both hTra2-α and hTra2-β can complement for dTra2 loss in Drosophila (32). Although a human orthologue to dTra does not exist, it was of interest to see if dTra could influence the ability of hTra2 to activate CD44 splicing. As shown in Fig. 3, cotransfection of the reporter minigene with dTra had only a minimal effect on inclusion. hTra2 was slightly inhibited in its ability to activate both exons in the presence of dTra. This result suggests that a human Tra-like protein probably does not participate in CD44 alternative splicing.

The effect of Tra2-β1 is exon specific. The action of hTra2-β1 protein could be due to recruitment of splicing factors to generic cis-elements. We therefore tested whether Tra2-β1 affects the inclusion of the constitutive middle exon of the reporter Dup 33.

This exon is flanked with weak signals derived from the human β-globin gene and weakened through internal deletions (45). Because Tra2-β1 did not significantly affect this minigene, we conclude that its effect is not the result of an induced binding to generic splicing signals (Fig. 4A). To determine which sequences within the CD44 exons were required to enhance exon inclusion by Tra2-β1, we assayed mutants of CD44 exon v4, in which the various C/A-rich sequences had been mutated. In earlier studies, we have reported that the C/A-rich sequence closest to the 3′-end of the exon was the most important sequence for recognition (24). Mutation of this sequence causes production of a RNA containing exon v5 but lacking exon v4 (24). Cotransfection with Tra2-β1 did not reverse the effect of the mutation or increased of exon v5 inclusion (Fig. 4B, lanes 5 and 6). This result suggests that the induction of exons v4 and v5 inclusion required the presence of the C/A-rich sequences within exon v4. Although the result with exon v4 is expected, the result with exon v5 is somewhat surprising given the presence of the sequence GAAGAA within exon v5. The mutant assayed in Fig. 4 altered the exon v4 enhancer sequence from CAGCAACAAGGGA to CAGAuAAggACuAGGA. This not only changed the C/A richness of the enhancer and its similarity to the C/A-rich sequences, but also converted the sequence into a sequence quite similar to the doublesex purine-rich element (sequence GGACAAAGGACAA). Despite this similarity, raising the concentration of human Tra1 did not significantly affect this minigene, we showed in Fig. 3, cotransfection of the reporter minigene with dTra increased the production of aberrant RNA. Asterisk, cotransfection with Tra2-β1 also induced the production of aberrant RNA. A, minigene used as a splicing reporter. Exons v4 and v5, along with the intron sequences between and surrounding them, were inserted into the first intron of the human β-globin gene. Product RNAs from this minigene either include or exclude exons v4 and v5. B, RNA splicing patterns by low-cycle RT-PCR. Cotransfection of the reporter in (A) and expression vectors (0, 1, 2, 3, or 4 μg) coding for either human Tra2-β1 or ASF/SF2. Major products resulting from normal splicing patterns. Asterisk, cotransfection with Tra2-β1 also induced the production of aberrant RNA. C, quantification of the effects of Tra2-β1 or ASF/SF2 from multiple experiments. Gels of amplification products were analyzed in the phosphorimager, and the percentage of RNA, including both exon v4 and exon v5, was plotted with respect to the amount of input Tra2-β1 DNA.

Cotransfection of this reporter construct with human Tra2-β1 (Fig. 2B) altered splicing of the construct and increased the inclusion of both exons from 19.5 ± 5.78% to 65 ± 4.74% (mean ± SD; Fig. 2C). In contrast, cotransfection with the related SR protein ASF/SF2 had little to no effect on CD44 alternative splicing with an inclusion of both exons from 19.5 to 65 ± 4.74% (mean ± SD; Fig. 2C). In contrast, cotransfection with the related SR protein ASF/SF2 had little to no effect on CD44 alternative splicing with an
enhancer and indicates that Tra2-h1 binds to multiple elements on the CD44 exons v4 and v5.

Effect of other SR proteins on CD44 exons v4 and v5 splicing. We tested other SR proteins for their ability to affect the recognition and inclusion of CD44 variable exons v4 and v5. Although 9G8 and SRp55 did not enhance inclusion significantly (data not shown), SC35 slightly decreased inclusion of the two exons from 19.5 ± 5.8% down to 11.8 ± 3.2% (Fig. 5). SRp20 slightly increased inclusion of both exons up to 32.6 ± 6.6% (Fig. 5), whereas SRp75 had just a small effect on both exon inclusion with 30.4 ± 3.2% but caused pronounced production of a RNA containing only one of the two variable exons from 9.1 ± 1.9% to 24.2 ± 3.3% (Fig. 5). Multiple RNA-binding proteins are observed to bind simultaneously to splicing regulatory signals.

Induction of variable exon inclusion in CD44 is accompanied by Tra2-h1 expression in invasive breast cancer. Thus far, we showed that Tra2-h1 promotes exons v4 and v5 inclusion in experimental cell culture systems. To test whether this effect could be observed in tumor samples, we analyzed human breast cancer tissue.

Expression analysis was done in histologically confirmed breast cancers and corresponding pairs of nonpathologic breast tissue. CD44 alternative splicing was determined by RT-PCR using primers directed against the constitutive exons 5 and 16 of the CD44 gene (Fig. 6A). Tra2-h1 expression in breast cancer development was monitored by Tra2-h1-specific RT-PCR (Fig. 6B and C) and Western blot (Fig. 6D). Breast cancer specimen showed an induction of alternative CD44 splicing compared with nonpathologic tissue in accordance to recently published findings (Fig. 6A; ref. 16). This induction was accompanied by an increase in Tra2-h1 expression. We analyzed the amount of Tra2-h1 RNA in 36 breast cancer samples compared with normal breast tissue of the same patient. All values were normalized to 18S RNA. RT-PCR revealed an overexpression of Tra2-h1 RNA in breast cancer samples. The mean of Tra2-h1 RNA in breast cancer was 85.7 ± 23.4% of 18S RNA (mean ± SD) in contrast to 57.7 ± 35.6% in normal breast tissue (Fig. 6C). This difference was statistically highly significant (P < 0.0001). RT-PCR analysis of SRp40 as a control revealed constant levels in normal and cancerous tissues (data not shown). Western blot results confirmed the induction of Tra2-h1 on the protein level (Fig. 6D).

For a more detailed analysis of Tra2-h1 expression in breast cancer, we did additional immunohistochemical analysis of the matched pairs. In accordance with our previous findings (Fig. 7), immunohistochemistry revealed a specific induction of Tra2-h1 in breast cancer. In all specimen investigated, strong nuclear Tra2-h1 expression was restricted to invasive breast cancer tissue (Fig. 7A and B). Weak or no expression was found in adjacent normal breast tissue of the respective patients (Fig. 7C). These findings indicate a specific induction of Tra2-h1 expression in breast cancer development rather than unspecific changes of the splicing machinery.
Discussion

Changes in alternative splicing of the CD44 gene are associated with tumor progression and metastasis in breast cancer. A recently published study suggested that specific alterations in the relative concentrations of SR proteins during breast cancer development might be responsible for these effects (16), but functional data were not determined.

dTra2 was the first member of the SR family of splicing factors shown to be required for exon recognition regulated by exonic enhancer sequences (46). Further experiments showed that dTra2, dTra, and several other SR proteins act synergistically to recognize individual exonic enhancer sequences (26–31). In humans, no orthologue for Drosophila dTra has been uncovered, suggesting that human Tra2 proteins may bind to RNA with noticeably different binding partners and RNA specificity.

In vitro, GAAGAA-based enhancers were identified as targets for hTra2-h1 binding, suggesting that hTra2-h1 binds to G/A-rich exon enhancers. Experiments in vivo showed that hTra2-h1 binds to a more degenerate sequence GVVGANR, which is partially found in the doublesex gene, where the protein could interact with the dsx-repeat AAAGGACAAAGGACAAA, which is rich in CAA sequences (putative Tra2-h1-binding sites are italicized). This enhancer could be considered as a version of C/A-rich elements, which we identified earlier as an exon enhancer sequence involved in the
specific regulation of alternative CD44 exons v4 and v5 splicing by YB-1 (24).

This background made human Tra2-β1 a potential candidate to regulate alternative CD44 splicing. We observed Tra2-β1-dependent activation of inclusion of two CD44 variable exons that have both C/A-rich and G/A-rich exon enhancer sequences. The ability of both proteins to enhance inclusion, however, was dependent on a single C/A-rich element (CAGACACAACCAAGGA) that resides within exon v4. When this sequence was mutated to CAGAUAAG-A CuAAGGA, inclusion of v4 was eliminated but some level of inclusion of exon v5 remained. Increasing the concentration of Tra2 did not result in increased inclusion of exon v5 in this mutant background despite the presence of the sequence GAAGA within an enhancer in exon v5. Inclusion of exon v4 was also not restored despite the fact that the created mutation contained two GGA elements similar to the purine-rich enhancer element from the Drosophila doublesex exon that binds dTra2. This observation suggests that human Tra2 recognizes C/A-rich exon enhancers rather than G/A-rich exon enhancers in CD44 and agrees with the binding sequence of Tra2-β1 found in vivo.

It should be noted that CD44 alternative splicing is often accompanied by inclusion of neighboring variable exons, suggesting interaction between the factors that recognize individual CD44 exons. Exons v4 and v5 may be particularly prone to this type of multixon recognition. Examination of cytoplasmic RNAs coding for CD44 variable exons has detected not only RNAs that contain both exons v4 and v5 but also RNA species that contain the short intron between them but no other intron (47). Thus, it is possible that exons v4 and v5 are initially recognized as a single large exon followed by removal of the intervening sequence between them. Several reports have also suggested that the levels of CD44 mRNA containing this intron are increased in tumor cells where inclusion of exons v4, v5, and v6 are also increased (48).

Although CD44 splicing was not dependent on Drosophila dTra, it is possible that other human proteins may play the role of Tra in Tra2-mediated recognition of the CD44 exons, such as hnrRNP G (49, 50). Two human proteins that influence exon v4 inclusion, YB-1 and the RNA helicase p72, were thus far identified (24, 44). Like Tra2, YB-1 binds to C/A-rich sequences. Therefore, it seems possible that the interaction of Tra2-Tra-SR proteins could be replaced with a Tra2-YB-1-p72 interaction on CD44 exon v4.

The statistically significant induction of Tra2-β1 expression levels in invasive breast cancer, in contrast to their corresponding pairs of normal tissue controls, is in accordance to our findings of differential SR protein expression changes in a mouse model of breast cancer development (16). These findings were conclusive on the RNA as well as protein level and, here, especially morphologically as determined by immunohistochemistry. These results are accompanied by an induction of alternative CD44 splicing in the same paradigm.

In additional cell culture experiments, we analyzed the potential Tra2-β1 effect on endogenous CD44. In parallel to findings with YB-1, these experiments could not detect an overall induction of alternative splicing of the endogenous CD44 gene (data not shown). YB-1 and Tra2-β1 are, to date, the strongest splicing activators of CD44. The missing effects on endogenous CD44 might be due to the large internal cassette of variable CD44 exons with large numbers of silencing cis- and trans-acting elements that are deleted in our reporter constructs.

Besides CD44, several other genes show altered RNA processing during breast cancer development, including hormone receptors and genes involved in apoptosis (51–53). Because splicing changes in these proteins may have a pronounced effect on cellular function, it is important to understand the role of alternative processing in breast cancer. Specific splicing factor expression patterns might be responsible for the metastatic phenotype of certain tumors and thereby represent new targets for intervention in subgroups of patients at high risk.

With respect to our functional data, our findings suggest a specific involvement of human Tra2-β1 in the recognition of CD44 variable exons and a potential influence in regulating the expression of CD44 isoforms involved in breast cancer progression and metastasis.

Acknowledgments

Received 9/10/2004; revised 12/2/2005; accepted 2/17/2006. Grant support: German Cancer Aid grant 106132 (E. Stickeler and S. Stamm) and German Research Foundation grant St 153/11-1 (E. Stickeler).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank S.M. Berget for helpful comments on the article, W. Mattox for generous support with the Tra2 plasmids and Tra2 proteins, and members of the Berget Laboratory for helpful suggestions and critical comments.

References

20. van Oers CC, Adema GJ, Zandberg H, Moen TC, Bann PD.
Two different sequence elements within exon 4 are necessary for calcitonin-specific splicing of the human calcitonin/calcitonin gene-related peptide I pre-mRNA. Mol Cell Biol 1994;14:951–60.

Splicing Factor Tra2-β1 Is Specifically Induced in Breast Cancer and Regulates Alternative Splicing of the CD44 Gene

Dirk O. Watermann, Yesheng Tang, Axel zur Hausen, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/66/9/4774

Cited articles
This article cites 53 articles, 25 of which you can access for free at:
http://cancerres.aacrjournals.org/content/66/9/4774.full#ref-list-1

Citing articles
This article has been cited by 27 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/66/9/4774.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/66/9/4774. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.