Polo-like Kinase 1 Is Involved in Invasion through Extracellular Matrix

Aylin Rizki, Joni D. Mott, and Mina J. Bissell

Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Abstract
Polo-like kinase 1 (PLK1) has important functions in maintaining genome stability via its role in mitosis. Because PLK1 is up-regulated in many invasive carcinomas, we asked whether it may also play a role in acquisition of invasiveness, a crucial step in transition to malignancy. In a model of metaplastic basal-like breast carcinoma progression, we found that PLK1 expression is necessary but not sufficient to induce invasiveness through laminin-rich extracellular matrix. PLK1 mediates invasion via vimentin and α1 integrin, both of which are necessary. We observed that PLK1 phosphorylates vimentin on Ser82, which in turn regulates cell surface levels of α1 integrin. We found PLK1 to be also highly expressed in preinvasive in situ carcinomas of the breast. These results support a role for the involvement of PLK1 in the invasion process and point to this pathway as a potential therapeutic target for preinvasive and invasive breast carcinoma treatment. [Cancer Res 2007;67(23):11106–10]

Introduction
Polo-like kinase 1 (PLK1) is a member of the well-conserved family of polo-like kinases, which has four known members in humans: PLK1, PLK2, PLK3, and PLK4. Silencing of PLK1 via small interfering RNA (siRNA) induces apoptosis, interferes with mitosis (1, 2), inhibits centrosome amplification (3), and down-regulates response to DNA damage via BRCA2 phosphorylation (1). PLK1 mRNA level is transiently down-regulated in response to DNA damage, and this is dependent on BRCA1 and its downstream effectors, CHEK1 kinases (4). In addition to DNA damage and mitosis, PLK1 has been implicated in the Golgi checkpoint pathway that ensures proper segregation of this organelle during cell division (5).

Consistent with its known functions, PLK1 expression is regulated during cell cycle progression: levels are low in G0,G1, and S but begin to increase in G2 and peak in M phase. In general, active proliferation has been correlated with high PLK1 levels and differentiation (induced by factors in culture) is correlated with low levels, whereas DNA damage acts as a transient down-regulator. In normal tissues, PLK1 is found only in actively proliferating tissues, such as placenta, and its expression increases in many invasive carcinomas, including those of the breast, ovarian, esophageal, head and neck, and skin (reviewed in ref. 6). Interestingly, PLK1 levels are also regulated by a direct interaction with the chaperone heat shock protein Hsp90, which has recently been linked to regulation of matrix metalloproteinase (MMP) function (7, 8).

Using the HMT-3522 cell line series, composed of the non-invasive S1 and S2, preinvasive S3-A, S3-B, and S3-C, and invasive T4-2 constituting a faithful model for the metaplastic basal-like breast cancer subtype (9, 10), here we found a role for PLK1 in invasion, described a mechanism, and propose a therapeutic targeting strategy.

Materials and Methods
Cell culture. Cells were grown in tissue culture monolayers (two-dimensional) using Falcon tissue culture plastic or three-dimensional laminin-rich extracellular matrix (lrECM; Matrigel, BD Biosciences) in defined medium as described previously (11, 12). S2 and S3 cells were grown under the same conditions as T4-2.

Reverse transcription-PCR. Semiquantitative reverse transcription-PCR (RT-PCR) for PLK1 was performed using the following primers (5′-3′): aggcctgccgatga (forward) and tctcttgccgctgag (reverse). After having determined linear range, conditions were as follows: 96°C for 3 min, 34× (96°C for 30 s, 58°C for 30 s, 72°C for 1 min), 72°C for 5 min.

Western blots. SDS-PAGE-based standard methods were used. Primary antibodies were the following: PLK1, rabbit polyclonal to peptide 8-21, PC382 (Chemicon) at 1:200 dilution; PLK2 (Novus) at 1:1,000 dilution; PLK4 (Novus) at 1:1,000 dilution; vimentin, rabbit polyclonal JM3634 (MBL International) at 1:100 dilution; and phosphorylated vimentin (Ser82), D095-3 (MBL International) at 1:500 dilution.

Invasion assay. Invasion through lrECM (Matrigel) was measured in Boyden chamber assays essentially as described (13). The number of invading cells (of 1 × 10⁶ seeded) was determined after 48 h of incubation (unless indicated otherwise) in either regular growth medium, medium containing different concentrations of the GlaxoSmithKline compound, (p1 function blocking antibody, and A2B1I (Sierra BioSource), or medium containing 2-day conditioned medium from T4-2 cell cultures (for induction of invasion in S3-C cultures). For siRNA-treated T4-2 or S3-C cells, transfection of 30 to 150 nmol/L oligo with siPORT NeoFX (Ambion) was performed 24 h after plating cells. After 48 h in culture, siRNA-treated cells were trypsinized and seeded in Boyden chambers for invasion assays. siRNA oligos against PLK1 (3′ Alexa Fluor 488 labeled from Qiagen; DNA target sequence: cgactctgtgtggcgg, described in ref. 1), vimentin (oligo 1: Ambion ID 138993; oligo 2: Ambion ID 138994; oligo 3: Ambion ID 138995); or scrambled control siRNA (Silencer Cy3 labeled; Ambion) were used.

Synchronization. T4-2 cells were kept in DMEM/F12 for 6 h to synchronize in G0, after 2 days of siRNA inhibition by PLK1 or scrambled control. Cells were then plated over a thin layer of lrECM in chamber slides, in parallel to plating cells on a similar layer of lrECM for Boyden chamber invasion assays. The percentage of Ki67-positive cells per total 4,6-diamidino-2-phenylindole–stained nuclei was evaluated at 3, 6, 12, 24, and 48 h after release into optimal growth medium. A minimum of 200 nuclei from three fields was counted for each replicate chamber slide.

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Current address for A. Rizki: Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298.

Requests for reprints: Aylin Rizki, Department of Radiation Oncology, Virginia Commonwealth University, 401 College St., PO Box 980058, Richmond, VA 23298. Phone: 804-628-3534; Fax: 804-827-0635; E-mail: arizki@vcu.edu.

doi:10.1158/0008-5472.CAN-07-2348

1 A. Rizki et al. A human breast cell model of pre-invasive to invasive transition, submitted for publication.
Apoptosis by terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling. Percentage apoptotic T4-2 cells after transfection with scrambled control or PLK1 siRNAs were detected using the terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling (TUNEL) assay kit from Roche.

Cell surface expression. Live cells were immunostained in suspension before fixing with 2% paraformaldehyde. Primary antibodies were used at 1:10 dilution and secondary antibodies at 1:100 dilution. Fluorescence-activated cell sorting analysis was performed using EPICS XL-MCL data acquisition and display software on XL flow cytometry analyzers (University of California at Berkeley Flow Cytometry Facility). Gating of forward light scatter versus 90° light scatter allowed examination of intact cells only, and FITC fluorescence peak was evaluated for its median value and corrected using samples that had not been treated with primary antibody. Primary antibodies were as follows: β1 integrin, MAB1959 (Chemicon), and activated β1 integrin, HUTS-21 (BD PharMingen).

Tumorogenicity. We injected 2 million cells into the left and right fourth inguinal mammary glands of female BALB/c athymic nude mice (Simonsen Laboratories). To determine the effect of PLK1 down-regulation on tumorogenicity, PLK1 or scrambled control siRNAs were transfected into cells with 90% to 100% efficiency determined by using labeled siRNA oligos (Cy3 for scrambled and Alexa Fluor 488 for PLK1) and examining the percentage of cells containing the label by microscopy; cells were cultured for 4 days, injected into the fat pad, and allowed to form tumors for 5 weeks (minimum time needed for all T4-2 to form tumors).

Immunohistochemistry. Formalin-fixed, paraffin-embedded human breast tissue sections were obtained from the University of California at San Francisco (UCSF), Breast Specialized Program of Research Excellence, tissue core, or US Biomax, Inc. as 5-μm-thick serial sections. The samples from UCSF contained histologically normal, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC) areas on the same section, as reported by the case pathologist and found in the archive records, and H&E sections were examined and confirmed by the UCSF tissue core staff. The tissue from US Biomax contained pure DCIS (Fmg020247B, Fmg020341B, Fmg020358B, and Fmg020658B). The paraffin was removed by incubation in xylene and graded alcohols. Tissues were blocked in 3% hydrogen peroxide in PBS. Antigen retrieval was performed by incubating in 0.01% prewarmed trypsin in PBS followed by microwaving in 10 mmol/L sodium citrate buffer. Tissues were blocked in 1.5% normal horse serum in PBS and incubated with 10 μg/ml of PLK1 antibody (anti-PLK1, human [rabbit]; Calbiochem). Slides were washed with PBS and incubated with biotinylated anti-rabbit antibody [1:200 dilution, biotinylated anti-mouse IgG/anti-rabbit IgG (H+L); Vector Laboratories] followed by streptavidin-horseradish peroxidase (Vectastain ABC kit, Elite; Vector Laboratories) and complete 3,3′-diaminobenzidine tetrahydrochloride (Sigma) medium. Slides were washed and counterstained with hematoxylin followed by dehydration in graded alcohols and xylene. Signal intensity in each cell was scored using a Zeiss Axioskop on a scale of 0 to 3. A minimum of 100 cells was counted for all existing distinct normal, DCIS, and IDC areas per case.

Results

Given that PLK1 levels are misregulated in invasive carcinomas, we asked whether it could be involved in acquisition of invasiveness. To determine whether there was a correlation between PLK1 expression levels and invasiveness in the HMT-3522 metastatic breast carcinoma model (Fig. 1A), we examined PLK1 mRNA and protein levels in these cells, grown either in two-dimensional or three-dimensional lrECM cultures (Fig. 1B).
Expression levels were different in S1, S2, S3-A, and S3-B cells and did not correlate directly with invasion, suggesting that PLK1 expression per se is not sufficient for invasion. Consistent with this, overexpression of PLK1 in S3-C cells had dominant-negative effects on growth, as had been observed also previously (14), and did not induce invasion (data not shown). To determine if PLK1 is necessary for invasion, we down-regulated PLK1 levels in T4-2 and in induced S3-C cells using a published siRNA against PLK1 (1), which did not down-regulate the levels of PLK homologues PLK2 or PLK4 (Supplementary Fig. S1). This specific down-regulation of PLK1 level significantly decreased invasion (Fig. 1C). In addition, a chemical inhibitor of PLK1 from GlaxoSmithKline induced a dose-dependent inhibition of invasion, confirming the siRNA results (data not shown for proprietary reasons dictated by GlaxoSmithKline).

To explore the relationship between the effect of PLK1 on growth and invasion, we synchronized cells before plating on lrECM in the chamber, determining both the proportion of cycling cells and the number of invading cells at 6, 12, 24, and 48 h (Fig. 1D). Western blot for vimentin in T4-2 cells transfected with the indicated siRNAs. Vim2 used for subsequent experiments. Invasion assay for T4-2 cells transfected with the indicated siRNAs. Four experiments, duplicate samples. C, surface expression of β1 integrin. Four experiments. Values normalized to S1. P < 0.05, between T4-2 and all other cell types. Invasion assay for T4-2 cells treated with the indicated amounts of β1 integrin blocking antibody A2BII. P < 0.05, compared with untreated control, six experiments. D, invasion assay for T4-2 cells treated with siRNAs against PLK1 or vimentin, or β1 blocking antibody, in combinations indicated; four experiments, duplicate samples. P < 0.05, compared with scrambled control siRNA.

Figure 2. Vimentin (VIM) and β1 integrin are necessary for PLK1-mediated invasion. A, the mechanism proposed. B, Western blot for vimentin in T4-2 cells transfected with the indicated siRNAs. VIM used for subsequent experiments. Invasion assay for T4-2 cells transfected with the indicated siRNAs. Four experiments, duplicate samples. C, cell surface expression of β1 integrin. Four experiments. Values normalized to S1. P < 0.05, between T4-2 and all other cell types. Invasion assay for T4-2 cells treated with the indicated amounts of β1 integrin blocking antibody A2BII. P < 0.05, compared with untreated control, six experiments. D, invasion assay for T4-2 cells treated with siRNAs against PLK1 or vimentin, or β1 blocking antibody, in combinations indicated; four experiments, duplicate samples. P < 0.05, compared with scrambled control siRNA.

Based on reports that PLK1 phosphorylates vimentin on Ser82 (15), and that phosphorylation of vimentin by PKCε on NH2-terminal serines (Ser4, Ser6, Ser7, Ser8, and Ser9 tested in combination) is important for retargeting of endocytosed β1 integrin to the cell surface in mouse embryonic fibroblasts (16), we postulated that PLK1 might function in cellular invasion by phosphorylating vimentin on Ser82, thereby affecting β1 integrin-mediated invasion through lrECM (Fig. 2A). Inhibition of vimentin by siRNA down-regulated invasion (Fig. 2B). β1 integrin was expressed at a higher level on the surface of T4-2 cells than in S1, S2, and S3s, and its inhibition resulted in a decrease of invasiveness in a dose-dependent manner (Fig. 2C). The effects of down-regulating PLK1, vimentin, and β1 integrin function were not additive or synergistic in any combination (Fig. 2D), suggesting that the three proteins may function in the same invasion pathway. Knocking down PLK1 down-regulated the level of Ser82 phosphorylated vimentin (Fig. 3A), as well as decreasing the cell surface levels of β1 integrin (Fig. 3C), as did knocking down vimentin (Fig. 3C). Expressing mutant vimentin that contained a non-phosphorylatable Ser82 down-regulated invasion compared with the wild-type (WT) vimentin control, which had a higher level of phosphorylated Ser82 (Fig. 3B), as well as decreasing the total and activated β1 integrin levels on the cell surface (Fig. 3D).

To explore the relevance of this PLK1-mediated invasion mechanism to tumor phenotypes in vivo, we found that down-regulating PLK1 decreased the tumorigenicity of T4-2 cells in the mouse mammary fat pad (Fig. 4A). To ask whether PLK1 inhibition could potentially be used in treatment of preinvasive breast disease, we determined if in situ carcinomas expressed it. It was previously reported (6) that there was no detectable expression in normal tissues and that the invasive tumors displayed high
immunohistochemical signal. We confirmed these data: normal = 0.28 ± 0.15; invasive = 1.96 ± 0.06 (Fig. 4B and D). Interestingly, in the eight patient-matched biopsies we examined, in situ carcinoma lesions had higher levels of expression than invasive carcinoma regions on the same section: in situ = 2.64 ± 0.84; invasive = 1.90 ± 0.15 (P = 1.57 x 10^-5; Fig. 4C and D). The high expression in DCIS was not simply because of being adjacent to IDC because in four pure DCIS samples examined we also observed high level of PLK1 expression (Supplementary Fig. S2). Given our finding above that a reduction in PLK1 reduces invasion significantly, these results may indicate the use of PLK1 inhibitory compounds in treatment of DCIS as well.

Figure 3. PLK1 affects invasion via phosphorylating vimentin and down-regulating cell surface β1 integrin. A, Western blot for Ser82 phosphorylated vimentin in T4-2 cells treated with the indicated siRNAs. B, Western blot for Ser82 phosphorylated vimentin in T4-2 cells infected with lentivirus expressing WT vimentin pVIM (WT) or mutated vimentin pVIM (S82A). Invasion assay for T4-2 samples infected with lentivirus expressing a WT vimentin pVIM (WT) or mutated vimentin pVIM (S82A). Normalized to WT values. P = 0.036, three experiments, triplicate samples. C, cell surface expression of β1 integrin on T4-2 cells treated with the indicated siRNAs. P = 0.0007 (PLK1-scrambled control siRNA) and 0.003 (vimentin-scrambled control siRNA); four experiments. D, cell surface β1 integrin levels (total and active, as indicated), normalized to T4-2 cells expressing WT vimentin; four experiments.

Figure 4. PLK1 in vivo. A, frequency of tumor formation and mean tumor volumes in fat pad. T4-2 transfected with siRNA against PLK1 (n = 10) versus scrambled control siRNA (n = 5). B, control experiment for immunohistochemical detection of PLK1, comparing mock antibody with PLK1 antibody-treated samples. Bar, 100 μm. C, example; PLK1 immunohistochemical signal in normal, in situ, and invasive samples from the same patient. Bar, 100 μm. D, PLK1 signal intensity. Two normal (N) and two invasive (I) cases as controls, compared with eight cases each containing areas of normal as well as in situ/preinvasive (P) and invasive carcinomas.
Discussion

PLK1 is up-regulated in many invasive carcinomas and is important for maintaining genome stability via its functions in mitosis (17). Here, we found that PLK1 is involved also in acquisition of invasiveness in vimentin-expressing cells via regulating cell surface β1 integrin levels (Figs. 2 and 3). Such acquired “moonlighting” functions have been described for several other proteins as well (18, 19). It is possible that the normal function of PLK1 in mediating intermediate filament-regulated events in cytokinesis manifests itself aberrantly when placed in the context of a malignant cell, resulting in a regulatory function for invasion. Although we showed a role for PLK1 in invasion via vimentin and β1 integrin, recent data on the involvement of the yeast polo-like kinase, CDC5, in cytokinesis via targeting and activation of RhoA to the cleavage furrow (20) suggest that actin filaments could potentially be involved in this regulation as well.

During mitosis, adherent cells first round up and decrease their attachment to the substratum, but after cytokinesis, they increase attachment and spread. The dynamics of attachment and detachment is critical for cells to go through mitosis (21). Consistent with this, we found the cell surface levels of β1 integrin to be regulated by PLK1 via phosphorylation of vimentin on Ser82 (Fig. 3). Importantly, however, we found that the effects of PLK1 on mitosis and invasion are separable (Fig. 2; GlaxoSmithKline compound data). Additional support for the separability of mitosis and invasion effects in this pathway comes from our observation that vimentin siRNAs, which down-regulate invasion, do not have any effects on growth (data not shown).

In addition to PLK1, Ku80, which is important in maintaining genome stability via double-strand break repair, is involved in invasion (19). Ku80 interacts with MMP9 on the cell surface, and its inhibition results in reduced activity of MMP9 and invasion. PLK1 down-regulation, however, does not affect MMP9 activity (data not shown), suggesting an MMP9-independent function. In addition, we found that the centromeric protein CENPA and the double-strand break repair protein XRCC3 were involved in invasion in Boyden chamber assays, whereas the M2 subunit of ribonucleotide reductase RRM2 was not (data not shown). We have now dubbed genes such as PLK1, CENPA, XRCC3, and Ku80 as genomic instability and extracellular matrix invasion (GISEM) genes. Targeting the acquired or moonlighting invasion function in malignant cells without disrupting the ability of GISEM genes, such as PLK1, to maintain a stable genome in normal cells could contribute to the development of anticancer therapeutics with reduced toxicity.

References

1. Lee M, Daniels MJ, Venkitaraman AR. Phosphorylation acquisition of invasiveness in vimentin-expressing cells via regulating cell surface β1 integrin levels (Figs. 2 and 3). Such acquired “moonlighting” functions have been described for several other proteins as well (18, 19). It is possible that the normal function of PLK1 in mediating intermediate filament-regulated events in cytokinesis manifests itself aberrantly when placed in the context of a malignant cell, resulting in a regulatory function for invasion. Although we showed a role for PLK1 in invasion via vimentin and β1 integrin, recent data on the involvement of the yeast polo-like kinase, CDC5, in cytokinesis via targeting and activation of RhoA to the cleavage furrow (20) suggest that actin filaments could potentially be involved in this regulation as well.

During mitosis, adherent cells first round up and decrease their attachment to the substratum, but after cytokinesis, they increase attachment and spread. The dynamics of attachment and detachment is critical for cells to go through mitosis (21). Consistent with this, we found the cell surface levels of β1 integrin to be regulated by PLK1 via phosphorylation of vimentin on Ser82 (Fig. 3). Importantly, however, we found that the effects of PLK1 on mitosis and invasion are separable (Fig. 2; GlaxoSmithKline compound data). Additional support for the separability of mitosis and invasion effects in this pathway comes from our observation that vimentin siRNAs, which down-regulate invasion, do not have any effects on growth (data not shown).

In addition to PLK1, Ku80, which is important in maintaining genome stability via double-strand break repair, is involved in invasion (19). Ku80 interacts with MMP9 on the cell surface, and its inhibition results in reduced activity of MMP9 and invasion. PLK1 down-regulation, however, does not affect MMP9 activity (data not shown), suggesting an MMP9-independent function. In addition, we found that the centromeric protein CENPA and the double-strand break repair protein XRCC3 were involved in invasion in Boyden chamber assays, whereas the M2 subunit of ribonucleotide reductase RRM2 was not (data not shown). We have now dubbed genes such as PLK1, CENPA, XRCC3, and Ku80 as genomic instability and extracellular matrix invasion (GISEM) genes. Targeting the acquired or moonlighting invasion function in malignant cells without disrupting the ability of GISEM genes, such as PLK1, to maintain a stable genome in normal cells could contribute to the development of anticancer therapeutics with reduced toxicity.

References

1. Lee M, Daniels MJ, Venkitaraman AR. Phosphorylation acquisition of invasiveness in vimentin-expressing cells via regulating cell surface β1 integrin levels (Figs. 2 and 3). Such acquired “moonlighting” functions have been described for several other proteins as well (18, 19). It is possible that the normal function of PLK1 in mediating intermediate filament-regulated events in cytokinesis manifests itself aberrantly when placed in the context of a malignant cell, resulting in a regulatory function for invasion. Although we showed a role for PLK1 in invasion via vimentin and β1 integrin, recent data on the involvement of the yeast polo-like kinase, CDC5, in cytokinesis via targeting and activation of RhoA to the cleavage furrow (20) suggest that actin filaments could potentially be involved in this regulation as well.

During mitosis, adherent cells first round up and decrease their attachment to the substratum, but after cytokinesis, they increase attachment and spread. The dynamics of attachment and detachment is critical for cells to go through mitosis (21). Consistent with this, we found the cell surface levels of β1 integrin to be regulated by PLK1 via phosphorylation of vimentin on Ser82 (Fig. 3). Importantly, however, we found that the effects of PLK1 on mitosis and invasion are separable (Fig. 2; GlaxoSmithKline compound data). Additional support for the separability of mitosis and invasion effects in this pathway comes from our observation that vimentin siRNAs, which down-regulate invasion, do not have any effects on growth (data not shown).

In addition to PLK1, Ku80, which is important in maintaining genome stability via double-strand break repair, is involved in invasion (19). Ku80 interacts with MMP9 on the cell surface, and its inhibition results in reduced activity of MMP9 and invasion. PLK1 down-regulation, however, does not affect MMP9 activity (data not shown), suggesting an MMP9-independent function. In addition, we found that the centromeric protein CENPA and the double-strand break repair protein XRCC3 were involved in invasion in Boyden chamber assays, whereas the M2 subunit of ribonucleotide reductase RRM2 was not (data not shown). We have now dubbed genes such as PLK1, CENPA, XRCC3, and Ku80 as genomic instability and extracellular matrix invasion (GISEM) genes. Targeting the acquired or moonlighting invasion function in malignant cells without disrupting the ability of GISEM genes, such as PLK1, to maintain a stable genome in normal cells could contribute to the development of anticancer therapeutics with reduced toxicity.

References

1. Lee M, Daniels MJ, Venkitaraman AR. Phosphorylation acquisition of invasiveness in vimentin-expressing cells via regulating cell surface β1 integrin levels (Figs. 2 and 3). Such acquired “moonlighting” functions have been described for several other proteins as well (18, 19). It is possible that the normal function of PLK1 in mediating intermediate filament-regulated events in cytokinesis manifests itself aberrantly when placed in the context of a malignant cell, resulting in a regulatory function for invasion. Although we showed a role for PLK1 in invasion via vimentin and β1 integrin, recent data on the involvement of the yeast polo-like kinase, CDC5, in cytokinesis via targeting and activation of RhoA to the cleavage furrow (20) suggest that actin filaments could potentially be involved in this regulation as well.

During mitosis, adherent cells first round up and decrease their attachment to the substratum, but after cytokinesis, they increase attachment and spread. The dynamics of attachment and detachment is critical for cells to go through mitosis (21). Consistent with this, we found the cell surface levels of β1 integrin to be regulated by PLK1 via phosphorylation of vimentin on Ser82 (Fig. 3). Importantly, however, we found that the effects of PLK1 on mitosis and invasion are separable (Fig. 2; GlaxoSmithKline compound data). Additional support for the separability of mitosis and invasion effects in this pathway comes from our observation that vimentin siRNAs, which down-regulate invasion, do not have any effects on growth (data not shown).

In addition to PLK1, Ku80, which is important in maintaining genome stability via double-strand break repair, is involved in invasion (19). Ku80 interacts with MMP9 on the cell surface, and its inhibition results in reduced activity of MMP9 and invasion. PLK1 down-regulation, however, does not affect MMP9 activity (data not shown), suggesting an MMP9-independent function. In addition, we found that the centromeric protein CENPA and the double-strand break repair protein XRCC3 were involved in invasion in Boyden chamber assays, whereas the M2 subunit of ribonucleotide reductase RRM2 was not (data not shown). We have now dubbed genes such as PLK1, CENPA, XRCC3, and Ku80 as genomic instability and extracellular matrix invasion (GISEM) genes. Targeting the acquired or moonlighting invasion function in malignant cells without disrupting the ability of GISEM genes, such as PLK1, to maintain a stable genome in normal cells could contribute to the development of anticancer therapeutics with reduced toxicity.

References
Extracellular Matrix
Polo-like Kinase 1 Is Involved in Invasion through

Aylin Rizki, Joni D. Mott and Mina J. Bissell

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://cancerres.aacrjournals.org/content/67/23/11106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cited articles</th>
<th>This article cites 21 articles, 8 of which you can access for free at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://cancerres.aacrjournals.org/content/67/23/11106.full#ref-list-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citing articles</th>
<th>This article has been cited by 15 HighWire-hosted articles. Access the articles at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://cancerres.aacrjournals.org/content/67/23/11106.full#related-urls</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/67/23/11106. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>