Mitogen-Activated Protein Kinase Phosphatase-1 Is a Mediator of Breast Cancer Chemoresistance

George W. Small, Yue Y. Shi, Linda S. Higgins, and Robert Z. Orlowski

Abstract

The mitogen-activated protein kinase (MAPK) phosphatase (MKP)-1 is overexpressed in a large proportion of breast cancers, and in some systems interferes with chemotherapy-mediated proapoptotic signaling through c-Jun-NH2-terminal kinase (JNK). We therefore sought to examine whether MKP-1 is a mediator of breast cancer chemoresistance using a14-myc human mammary epithelial cells, and BT-474 and MDA-MB-231 breast carcinoma cells. Transient or stable overexpression of MKP-1 reduced caspase activation and DNA fragmentation while enhancing viability in the face of treatment with alkylating agents (mechloethamine), anthracyclines (doxorubicin), and microtubule inhibitors (paclitaxel). This overexpression was associated with suppression of JNK activation, and JNK blockade alone induced similar effects. In contrast, reduction of MKP-1 levels using a small interfering RNA, or its targeted inactivation, enhanced sensitivity to these drugs, and this was associated with increased JNK activity. Pharmacologic reduction of MKP-1 by pretreatment with a novel p38 MAPK inhibitor, SD-282, suppressed MKP-1 activation by mechloethamine, enhanced active JNK levels, and increased alkylating agent–mediated apoptosis. Combination treatment with doxorubicin and mechloethamine had similar effects, and the enhanced efficacy of this regimen was abolished by forced overexpression of MKP-1. These results suggest that the clinical efficacy of combinations of alkylating agents and anthracyclines is due to the ability of the latter to target MKP-1. Moreover, they support the hypothesis that MKP-1 is a significant mediator of breast cancer chemoresistance, and provide a rationale for development and translation of other agents targeting MKP-1 into the clinical arena to overcome resistance and induce chemosensitization.

Introduction

Mitogen-activated protein kinase (MAPK) phosphatase (MKP)-1 is the prototypic member of a family of dual-specificity phosphatases that dephosphorylate tyrosine and threonine residues on target proteins. This phosphatase is best known for its specificity toward p44/42 MAPK (1), but recent studies showed that MKP-1 has a substrate preference for p38 MAPK and c-Jun-

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Requests for reprints: Robert Z. Orlowski, University of North Carolina at Chapel Hill, 22-003 Lineberger Comprehensive Cancer Center, CB 7295, Mason Farm Road, Chapel Hill, NC 27599-7295. Phone: 919-966-9762; Fax: 919-966-8212; E-mail: R_Orlowski@med.unc.edu.

©2007 American Association for Cancer Research. doi:10.1158/0008-5472.CAN-06-2644
targeting MKP-1, such as through p38 inhibition, may prove fruitful in overcoming chemoresistance and inducing chemosensitization.

Materials and Methods

Materials. Phosphatase inhibitors deltamethrin and nodularin were from Calbiochem-Novabiochem Corp., whereas sodium orthovanadate was from Sigma Chemical Co. Phenylmethylsulfonyl fluoride (PMSF) was from Fisher Scientific. The p38 MAPK inhibitor SB-283 (23) was from Scios, Inc. Stock solutions were prepared in DMSO (SD-282 and phosphatase inhibitors; Fisher Scientific), 100% ethanol (PMSF; Mallinckrodt Baker, Inc.), or PBS (sodium orthovanadate). These reagents were used at concentrations indicated in the text, with a final vehicle concentration no >0.5%. All other chemicals were obtained from Fisher Scientific.

Cell lines and cell culture. A1N4-myc human mammary epithelial cells transformed by c-myc (24), and BT-474 (25) and MDA-MB-231 (26) carcinoma cells served as human breast cancer models. Preparation of MDA-MB-231 cells overexpressing MKP-1, or vector-bearing controls, was described previously (22), as was the cloning of BT-474 cells expressing an siRNA targeting MKP-1 (siMKP), or a scrambled sequence control (ssMKP; ref. 27). Mouse embryonic fibroblasts (MEF) from homozygous MKP-1 knockout mice (28), and wild-type controls, were from the Bristol Myers Squibb Research Institute. All cells were propagated in incubators providing a humidified atmosphere with 5% CO2 (17, 22, 27, 29).

Adenovirus-mediated expression. Recombinant adenoviral plasmids expressing MKP-1 and green fluorescent protein (GFP), or GFP alone as a control, were constructed using the pAdEasy vector system (Stratagene; Fisher Scientific), 100% ethanol (PMSF; Mallinckrodt Baker, Inc.), or PBS (sodium orthovanadate). These reagents were used at concentrations indicated in the text, with a final vehicle concentration no >0.5%. All other chemicals were obtained from Fisher Scientific.

Western blotting. Total cellular extracts were prepared in lysis buffer containing PBS, SDS, deoxycholate, and NP40 with protease and phosphatase inhibitors, and subjected to Western blotting (22). JNK activation status was determined using rabbit polyclonal antibodies recognizing active, dually phosphorylated (Thr183/Tyr185) p54/46 JNK (Cell Signaling Technology, Inc.). To quantify protein bands, autoradiographs were scanned with an Agfa Duoscan T2500 scanner (Agfa Corp.) into Adobe Photoshop 5.0 (Adobe Systems, Inc.), and densitometry was done using NIH Image version 1.61.

Apoptosis assays. Programmed cell death was evaluated as described (22) using the apoptosis-specific Cell Death Detection ELISAPLUS kit (Roche Applied Science). As a confirmatory assay in some cases, caspase activation was evaluated using the Apo-ONE Homogeneous Caspase-3/7 Assay kit (Promega Corporation). Additionally, cell proliferation and

![Figure 1.](image-url)

Figure 1. MKP-1 suppresses chemotherapy-mediated apoptosis. A, MKP-1 was stably overexpressed in MDA-MB-231 human breast carcinoma cells from pcDNA3/MKP-1 (pcMKP) and compared with the pcDNA3 vector control (pcDNA; left). These cells were exposed to doxorubicin (dox), 10 μmol/L mechiorethamine (mech), or 100 nmol/L paclitaxel (pac) for 18 h, and programmed cell death was quantified with an assay of caspase-3/7 activity. Caspase activity was expressed as a fold increase over vehicle-treated controls, which were arbitrarily set at 1.0. Columns, mean from 12 independent experiments; bars, SE. MKP-1 was also transiently overexpressed in MDA-MB-231 cells from an adenoviral vector along with GFP (Ad-MKP/GFP), and compared with the vector control (Ad-GFP; right) as above. Statistical comparisons were done as described: *, P < 0.05; **, P < 0.01. B, A1N4-myc human mammary epithelial cells were infected with either Ad-GFP/MKP-1 or Ad-GFP as a control; 24 h later, these cells were exposed to doxorubicin, mechiorethamine, or paclitaxel as described above. Apoptosis was evaluated with an assay detecting oligonucleosomal DNA fragmentation and expressed in relation to vehicle-treated controls, which were arbitrarily set at 1.0 (top). Columns, mean from 10 independent experiments; bars, SE. These cells were also analyzed for their viability after the described manipulations using the WST-1 reagent (bottom). Viability was expressed in relation to vehicle-treated controls, which were arbitrarily set at 100%. Columns, mean from 10 independent experiments; bars, SE. C, BT-474 human breast carcinoma cells were infected with adenoviral constructs, treated as described above, and then assayed for apoptosis (top) and viability (bottom).
viability were assessed by measuring mitochondrial-dependent cleavage of the tetrazolium salt WST-1 (Roche Applied Science).

Statistical analyses. Paired, two-tailed t tests were done to determine the statistical significance of the data obtained using Prism software (version 2.0; GraphPad Software). Findings were considered significant if P values were <0.05.

Results

Effect of MKP-1 overexpression on chemotherapy-mediated apoptosis. To examine the influence of MKP-1 on chemotherapy-induced cell death in breast carcinoma models, MDA-MB-231 cells were stably transfected with pcdNAS-MKP-1, resulting in a 2-fold increase in MKP-1 (Supplementary Fig. S1A) compared with pcdNAS controls. These cells were treated with the anthracycline doxorubicin, the alkylating agent mechlorethamine, or the microtubule inhibitor paclitaxel, and assayed for apoptosis. Mechlorethamine was used rather than cyclophosphamide because, although the latter is more clinically relevant, it must be transformed in vivo to the active metabolite 4-hydroxycyclophosphamide (30), and cannot be used in vitro. All three chemotherapeutics induced apoptosis, as measured by enhanced caspase-3/7 activity, in both cell lines (Fig. 1A, left). This enhancement was consistently greater, however, in the control MDA-MB-231/pcDNA3 cells, which did not overexpress MKP-1. In the case of mechlorethamine, for example, this alkylator induced 5.9-fold more caspase activity in MDA-MB-231/pcDNA3 cells, but only 2.6-fold more in MDA-MB-231/pcDNA3-MKP-1 cells ($P < 0.01$).

MDA-MB-231–based cell lines overexpressed MKP-1 but this level tended to decrease with propagation, and similar findings were noted in other cell lines. Therefore, an adenoviral-based expression system was used, allowing MKP-1 overexpression by up to 5-fold or more (Supplementary Fig. S1B). Doxorubicin, mechlorethamine, and paclitaxel induced caspase-3/7 activity in MDA-MB-231 cells infected with Ad-GFP or Ad-MKP/GFP (Fig. 1A, right), but this caspase activation was blunted by MKP-1. Paclitaxel, for example, enhanced caspase-3/7 activity by 4.3-fold in MDA-MB-231/Ad-GFP cells, but by only 2.3-fold in MDA-MB-231/Ad-MKP/GFP cells ($P < 0.01$).

It was of interest to confirm this antiapoptotic role of MKP-1 in other models and to use other means to quantify programmed cell death. To this end, A1N4-myc and BT-474 cells were infected with Ad-MKP/GFP or Ad-GFP and treated as described above. Exposure of A1N4-myc/Ad-MKP/GFP cells to chemotherapeutics enhanced apoptosis, as measured by the generation of oligonucleosomal DNA fragmentation, by an average of 2.2-fold above vehicle-treated controls (Fig. 1B, top). Overexpression of GFP alone, however, allowed these drugs to induce programmed cell death to a greater extent, with an average 5.4-fold increase. This was accompanied by a preservation of viability in the Ad-MKP/GFP–infected cells compared with their Ad-GFP counterparts (Fig. 1B, bottom). Chemotherapeutic treatments resulted in an average 22% decline of viability in A1N4-myc/Ad-GFP cells, but only 2% in A1N4-myc/Ad-MKP/GFP cells. Similar results were obtained with BT-474 cells, where apoptotic induction was blunted (Fig. 1C, top), and viability was preserved to a greater extent (Fig. 1C, bottom) by Ad-MKP/GFP. These findings supported the hypothesis that MKP-1 overexpression protected breast carcinoma cells from chemotherapy-mediated apoptosis.

Overexpression of MKP-1 and chemotherapy-mediated JNK activation. Several classes of chemotherapeutics, including anthracyclines (31, 32), alkylating agents (33), and taxanes (34–36), induce apoptosis in part through JNK activation. To determine the effect of these chemotherapeutics, and of MKP-1, on JNK, Western blotting was used to detect activated, dually phosphorylated JNK. Doxorubicin, mechlorethamine, and paclitaxel induced JNK activation in A1N4-myc, BT-474, and MDA-MB-231 cells infected with Ad-GFP (Fig. 2A). Overexpression of both GFP and MKP-1, however, dramatically blunted the ability of these drugs to enhance JNK activity. For example, in A1N4-myc cells, the anthracycline, alkylator, and microtubule inhibitor increased phosphorylated (phospho-)JNK levels by 3.5-, 4.7-, and 1.6-fold more, respectively, in Ad-GFP–infected cells compared with Ad-MKP/GFP cells. To verify that this JNK repression played a role in suppressing

![Figure 2](https://example.com/figure2.png)

Figure 2. MKP-1 expression represses JNK activity. A, A1N4-myc, BT-474, and MDA-MB-231 cells were infected with Ad-GFP (GFP) or Ad-MKP/GFP (MKP), and then treated with 5 μmol/L doxorubicin, 10 μmol/L mechlorethamine, or 500 nmol/L paclitaxel for 4 h. Extracts were then analyzed for phospho-JNK content by Western blotting using a phosphospecific JNK antibody recognizing activated, dually phosphorylated JNK. These blots were then stripped and reprobed for total JNK-1, and the fold change in phospho-JNK content is expressed for each condition relative to vehicle-treated control cells, which were arbitrarily set at 1.0, after correction for equal JNK loading. Finally, the abundance of corrected phospho-JNK was expressed in GFP-infected cells compared with those infected with Ad-GFP/MKP-1. Therefore, in the example of A1N4-myc, the value “3.5” indicates that A1N4-myc/Ad-GFP cells contain a 3.5-fold increased level of phospho-JNK compared with A1N4-myc/Ad-MKP-1 cells when both have been corrected for loading. Each panel is a representative result from one of two independent experiments. B, A1N4-myc cells were infected with either Ad-GFP or Ad-dn-c-Jun, and treated 24 h later with 1 μmol/L doxorubicin, 10 μmol/L mechlorethamine, or 100 nmol/L paclitaxel for 18 h. Apoptosis was evaluated with an assay detecting oligonucleosomal DNA fragmentation and expressed in relation to vehicle-treated controls, which were arbitrarily set at 1.0. Columns, mean from four independent experiments; bars, SE. Statistical comparisons were done as described. *, $P < 0.05$; **, $P < 0.01$.

www.aacrjournals.org 4461 Cancer Res 2007; 67: (9). May 1, 2007

Downloaded from cancerres.aacrjournals.org on November 22, 2021. © 2007 American Association for Cancer Research.
chemotherapy-mediated apoptosis, A1N4-myc cells were infected with Ad-GFP or with Ad-dn-c-Jun (37). When these cells were treated with doxorubicin, mechlorethamine, or paclitaxel (Fig. 2B), apoptosis-associated DNA fragmentation was induced in A1N4-myc/Ad-GFP cells. However, suppression of just one of the downstream effectors of JNK, c-Jun, decreased programmed cell death induced by these chemotherapeutics. These studies documented that MKP-1 overexpression and suppression of apoptosis was associated with blunted JNK activity and that this change played a role in modulating the levels of programmed cell death.

Genetic suppression of MKP-1 and chemotherapy-mediated apoptosis. If MKP-1 plays an antiapoptotic role, then inhibiting its expression should enhance chemosensitivity. To evaluate this possibility, genetic approaches were studied, including the use of an siRNA and targeted gene disruption. BT-474 cells stably expressing ssMKP, a control siRNA that does not target any known genes (22, 27), were treated with doxorubicin, mechlorethamine, or paclitaxel, all of which induced apoptosis (Fig. 3A). In BT-474 cells stably expressing siMKP, however, which suppressed MKP-1 expression (refs. 22, 27; Supplementary Fig. S1C), the extent of apoptosis was significantly enhanced, by an average of 2.2-fold. Although siMKP decreased MKP-1 levels, it did not abolish them; thus, we sought to study the effect of complete MKP-1 abrogation, such as might be possible in the future with a direct pharmacologic MKP-1 antagonist. MEFs from MKP-1 knockout (MKP−/−) mice, in which both MKP-1 alleles were disrupted (28), were therefore compared with wild-type (MKP+/+) controls. Doxorubicin, mechlorethamine, or paclitaxel induced apoptosis in MKP+/+ controls (Fig. 3B); however, MKP−/− cells were dramatically more sensitive. Treatment with doxorubicin, for example, resulted in a 12-fold increase of apoptosis in MKP−/− MEFs relative to wild-type controls, whereas for mechlorethamine there was a 10-fold difference. These studies supported the possibility that targeting MKP-1 represents a rational means of overcoming chemoresistance in breast malignancies.

Suppression of MKP-1 and JNK activation status. To further validate the hypothesis that MKP-1 was influencing chemotherapy-induced apoptosis through JNK, BT-474/siMKP, BT-474/ssMKP, and MKP+/+ and MKP−/− MEFs treated as above were analyzed by Western blotting. Doxorubicin, mechlorethamine, and paclitaxel enhanced the abundance of activated, dually phospho-JNK-1/2 (Fig. 4A), by 2.0-, 30.7-, and 3.5-fold, respectively, in BT-474/ssMKP cells. BT-474/siMKP cells, however, these agents induced enhanced levels of JNK activity, as reflected by a 4.4-, 144.0-, and 4.9-fold increase, respectively, in phosphorylated JNK-1/2. In the MEF model system, the three chemotherapeutics induced a modest increase in phospho-JNK in wild-type MKP+/+ cells (Fig. 4B). Targeted MKP-1 disruption enhanced the sensitivity of JNK to

Figure 3. Suppression or inactivation of MKP-1 enhances chemotherapy-mediated apoptosis. A, BT-474 cells stably expressing an siRNA to MKP-1 (siMKP) or a scrambled sequence control (ssMKP) were treated with 1 μmol/L doxorubicin, 10 μmol/L mechlorethamine, or 100 nmol/L paclitaxel for 18 h and analyzed with a DNA fragmentation assay as described previously. Columns, mean fold increase in apoptosis from 12 independent experiments; bars, SE. Statistical comparisons were done as described. *, P < 0.05; **, P < 0.01. B, wild-type MEFs (MKP+/+) or homozygous MKP-1 knockout MEFs (MKP−/−) were treated and analyzed as above. Columns, mean fold increase in apoptosis from 10 independent experiments; bars, SE.

Figure 4. Reduction of MKP-1 augments JNK activation. A, BT-474/ssMKP-1 (si) and BT-474/ssMKP-1 (ss) cells treated as above were analyzed for their content of activated JNK by Western blotting for phospho-JNK-1/2 levels, and the fold increase is expressed in relation to vehicle-treated controls, which were arbitrarily set at 1.0, after adjusting for equivalent loading of the JNK-1 control. Each panel is a representative result from one of two independent experiments. B, MKP-1 (+/+) and knockout (−/−) MEFs were treated with doxorubicin, mechlorethamine, or paclitaxel, and analyzed for their JNK activation status as described above.
activation by anthracyclines, alkylating agents, and microtubule inhibitors, in association with the increased apoptotic susceptibility of these cells (Fig. 3).

Impact of p38 MAPK inhibition on MKP-1 and apoptosis. In addition to the basal overexpression of MKP-1 seen in breast tumors, further MKP-1 induction occurs in response to genotoxic stressors, such as alkylating agents and proteasome inhibitors, in part through activation of p38 MAPK (18, 38, 39). Because clinically relevant direct pharmacologic MKP-1 inhibitors are not yet available, we considered the possibility that targeting p38 could serve to enhance chemosensitivity. BT-474 cells treated with mechlorethamine underwent programmed cell death in association with JNK activation, but this alkylation also substantially induced MKP-1 (Fig. 5A). Pretreatment with the p38 inhibitor SD-282 decreased mechlorethamine-mediated MKP-1 induction from 15.0- to 2.4-fold above controls. This was associated with a superinduction of JNK, with phospho-JNK levels increasing from 14.7- to 59.5-fold above vehicle-treated controls. To evaluate if this pharmacologic manipulation resulted in enhanced alkylation agent-mediated apoptosis, BT-474 cells were treated with mechlorethamine in the presence or absence of the p38 MAPK inhibitor (Fig. 5B). When MKP-1 was overexpressed to high levels due to p38 activation (Fig. 5A), mechlorethamine activated programmed cell death. However, when mechlorethamine-mediated MKP-1 induction was blunted with SD-282, higher levels of apoptosis were induced (P < 0.05).

Interaction between anthracyclines and alkylators at the level of MKP-1. We previously reported that anthracyclines, including doxorubicin and epirubicin, specifically suppressed MKP-1 transcription by a direct effect on its promoter (27). The above results with p38 inhibitors suggested, therefore, that the known clinical efficacy of the anthracycline/alkylating agent regimen against breast cancer might be due to its effect on MKP-1. To test this, A1N4-myc cells were infected with Ad-GFP or Ad-MKP/GFP, and then treated with vehicle, doxorubicin, mechlorethamine, or both. Lower MKP-1 levels were induced in these experiments because a lower multiplicity of infection with adenovirus vectors was used. This was necessary to allow for the detection of the higher levels of apoptosis anticipated due to the application of two antineoplastic agents as opposed to one, as well as the effect of adenoviral infection itself, within the linear range of the assay in use. A1N4-myc/Ad-GFP cells treated with the combination showed a reduction in MKP-1 compared with cells treated with the alkylation alone (Fig. 6A, left), and this was associated with enhanced phospho-JNK induction (Fig. 6A, left). Programmed cell death (Fig. 6B, left) was induced by the combination to a greater extent than a simple sum of the two agents, indicating the likely presence of synergy. In A1N4-myc/Ad-MKP/GFP cells, however, MKP-1 overexpression blunted JNK activation by the alkylation agent/anthracyline regimen (Fig. 6A, left). Notably, in the presence of higher levels of irrepressible MKP-1, this combination regimen was less active in inducing enhanced levels of programmed cell death in comparison with control, GFP-expressing counterparts (Fig. 6B, left). Under these conditions, mechlorethamine and doxorubicin had only an additive effect.

To confirm these findings, we studied BT-474 cells, and found that BT-474/Ad-GFP cells treated with the combination showed a reduction in MKP-1 compared with cells treated with the alkylation agent alone (Fig. 6A, right). This was associated with enhanced phospho-JNK induction (Fig. 6A, right), and levels of programmed cell death that were greater than the sum of the effect of each agent alone (Fig. 6B, right), supporting the presence of synergy. In BT-474/Ad-MKP/GFP cells, however, MKP-1 overexpression blunted JNK induction by the alkylation agent/anthracyline regimen (Fig. 6A, right). Importantly, in the presence of higher levels of irrepressible MKP-1, this combination regimen no longer induced apoptosis at levels higher than that achieved by either agent alone (Fig. 6B, right), supporting the presence of antagonism. These findings strongly support the hypothesis that MKP-1 suppression by anthracyclines or p38 MAPK inhibitors is a rational approach to chemosensitization to agents such as alkylators that further induce MKP-1 levels.
Our current results support the possibility that MKP-1 is an important mediator of de novo breast cancer chemoresistance because its overexpression to levels comparable with those in clinical samples inhibited the proapoptotic activity of an anthraccline, an alkylating agent, and a microtubule inhibitor (Fig. 1). This is in agreement with recent reports that MKP-1 may play a role in the glucocorticoid-mediated resistance seen in MCF-7 breast carcinoma cells in response to paclitaxel and doxorubicin (20, 21). Moreover, siRNA-mediated MKP-1 inhibition, or its complete abolition by targeted disruption, significantly enhanced the proapoptotic activity of these drugs (Fig. 3) that have clinical relevance to breast cancer in a number of settings, including adjuvant therapy (42). Mechanistic studies suggested that this effect of MKP-1 was mediated, at least in part, through its ability to modulate the activation of JNK. Overexpression of MKP-1, which inhibited apoptosis, was associated with decreased JNK activity (Fig. 2), whereas MKP-1 inhibition, which augmented apoptosis, resulted in enhanced phospho-JNK levels (Fig. 4), reflective of increased JNK activity. Also, inhibition of c-Jun, one of the downstream JNK mediators, inhibited chemotherapy-mediated apoptosis (Fig. 2), further validating the link between MKP-1, JNK, and programmed cell death.

Clinically relevant, direct MKP-1 inhibitors have not yet been developed; however, the current study suggests that they could be applicable to breast cancer, where up to 80% or more of primary samples overexpress this phosphatase (15, 16). It should be noted that MKP-1 is overexpressed in other malignancies as well, such as prostate cancer (9, 10, 16, 43). Given the early evidence of an inverse relationship between MKP-1 and apoptosis in prostate cancer (9), it is tempting to speculate that MKP-1 may mediate de novo chemoresistance in that malignancy. Our studies therefore provide an impetus for further preclinical development and clinical translation of direct MKP-1 inhibitors to overcome de novo chemoresistance. In that regard, recent results from Vogt et al. (44) and Lazo et al. (45), describing the identification of novel
agents that specifically inhibit MKP-1 *in vitro* at micromolar concentrations, are encouraging, and suggest that it may be possible to develop even more potent, clinically applicable inhibitors. MKP-1 is part of the stress response pathway and can be induced further by chemotherapeutics such as alkylating agents in a p38 MAPK-dependent process (18). Given the prominent role of alkylators in breast cancer therapy, we studied the effect of combinations with a p38 inhibitor and an anthracycline, which both suppress MKP-1. Regimens incorporating either a p38 inhibitor and an agent or a p38 inhibitor (Fig. 5), or an alkylator and doxorubicin (Fig. 6), resulted in enhanced proapoptotic activity, suppression of MKP-1, and enhanced JNK activation. Moreover, forced overexpression of MKP-1 suppressed the ability of the anthracycline/alkylating agent regimen to induce greater levels of programmed cell death, supporting the importance of inhibition of MKP-1 expression in this process.

These results suggest that the clinical relevance of alkylator/anthracycline regimens, which for many years were standards of care for adjuvant breast cancer therapy (42), may be in part due to doxorubicin-mediated suppression of cyclophosphamide-induced MKP-1. They also suggest that incorporation of p38 MAPK inhibitors, some of which are currently in clinical trials (46), may be a rational approach to chemosensitization to alkylating agents either in addition to, or in place of, doxorubicin. The latter approach has the potential of reducing the anthracycline-mediated cardiac toxicity associated with breast cancer chemotherapy (47). Moreover, inhibition of p38 may have other beneficial effects, such as suppression of P-glycoprotein (48), of activation of heat shock protein-27 (49), and of the AKT8 virus oncogene cellular homologue/protein kinase B (50), all of which may play roles in chemoresistance. It is also tempting to speculate that p38 MAPK activation, which is seen in a large proportion of breast neoplasms (14), and in some studies has portended a poor clinical prognosis (19), may have its effect through MKP-1-mediated chemoresistance.

Taken together, these studies strongly implicate MKP-1 as an important mediator of *de novo* and inducible chemoresistance. Approaches to inhibit MKP-1, such as through the development of pharmacologic agents that directly block its phosphatase activity, or through the use of p38 MAPK inhibitors that act indirectly by blocking its transcription, therefore merit further investigation as potential mechanisms to induce chemosensitization and overcome breast cancer chemoresistance.

Acknowledgments

Received 7/18/2006; revised 1/19/2007; accepted 2/14/2007.

Grant support: National Cancer Institute grant R01 CA102278 and Jefferson-Pilot Fellowship in Academic Medicine (R.Z. Orlowski, a Leukemia and Lymphoma Society Mamabushi Foundation Scholar in Clinical Research). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

References

Mitogen-Activated Protein Kinase Phosphatase-1 Is a Mediator of Breast Cancer Chemoresistance

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/67/9/4459

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2007/04/27/67.9.4459.DC1

Cited articles
This article cites 48 articles, 23 of which you can access for free at:
http://cancerres.aacrjournals.org/content/67/9/4459.full#ref-list-1

Citing articles
This article has been cited by 20 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/67/9/4459.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/67/9/4459.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.