Stromal Transforming Growth Factor-β Signaling Mediates Prostatic Response to Androgen Ablation by Paracrine Wnt Activity

Veronica R. Placencio,1 Ali-Reza Sharif-Afshar,2 Xiaohong Li,2 Hongxia Huang,2 Consolate Uwamariya,3 Eric G. Neilson,3 Michael M. Shen,3 Robert J. Matusik,1,3 Simon W. Hayward,1,2 and Neil A. Bhowmick1,2

Departments of 1Cancer Biology, 2Urologic Surgery, and 3Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee and 4Department of Medicine and Genetics and Development, Columbia University Medical Center, New York, New York

Abstract

Mechanisms of androgen dependence of the prostate are critical to understanding prostate cancer progression to androgen independence associated with disease mortality. Transient elevation of transforming growth factor-β (TGF-β) occurs after androgen ablation. To determine the role of TGF-β on prostate response to androgen ablation, conditional TGF-β type II receptor knockout mouse models of the epithelia (Tgfbr2NKX3.1KO) and stromal fibroblasts (Tgfbr2fspKO) were used. After castration, the prostates of Tgfbr2NKX3.1KO mice had apoptosis levels similar to those expected for control Tgfbr2flox/flox mice. Prostates of Tgfbr2fspKO mice, however, had reduced regression and high levels of proliferation associated with canonical Wnt activity throughout the glandular epithelia regardless of androgen status. In contrast, Tgfbr2flox/flox/stromal conditioned media transferred into Tgfbr2fspKO epithelia of the proximal ducts of the prostate after androgen ablation. The neutralization of Wnt signaling by the expression of secreted frizzled related protein-2 (SFRP-2) resulted in decreased LNCaP prostate epithelial cell proliferation in stromal conditioned media transfer experiments. In vivo tissue recombination studies using Tgfbr2fspKO prostatic stromal cells in combination with wild-type or SV40 large T antigen expressing epithelia resulted in prostate epithelial activity only in the surviving proximal ducts after castration. In vitro studies showed that androgen antagonist, bicalutamide, transiently elevated both Tgfbr2flox/flox and Tgfbr2fspKO stromal expression of Wnt-2, Wnt-3a, and Wnt-5a. The neutralization of Wnt signaling by the expression of secreted frizzled related protein-2 (SFRP-2) resulted in decreased LNCaP prostate epithelial cell proliferation in stromal conditioned media transfer experiments. In vivo tissue recombination studies using Tgfbr2fspKO prostatic stromal cells in combination with wild-type or SV40 large T antigen expressing epithelia resulted in prostates that were refractile to androgen ablation. The expression of SFRP-2 restored the Tgfbr2fspKO-associated prostate responsiveness to androgen ablation. These studies reveal a novel TGF-β, androgen, and Wnt paracrine signaling axis that enables prostatic regression of the distal ducts after androgen ablation while supporting proximal duct survival.

Introduction

Prostate cancer continues to be a major cause of death in aging men (1). The prostate is an androgen-dependent organ. As a result, treatment for prostate cancer includes the inhibition of androgens. Regardless of the initial positive response to androgen ablation, the cancer frequently overcomes its dependence on androgens and results in a drug-resistant cancer with few options for treatment. Although androgen ablation therapy is intended to target the prostate epithelia, the influence of the prostatic stroma on androgen responsiveness of the adjacent epithelia is likely to be critical in the long-term effectiveness of treatment.

Mature and differentiated prostate tissue is formed and maintained by effects on androgen receptors within the stromal compartment (2, 3). The concept of mesenchymal cells relaying androgen sensitivity to the epithelium through paracrine interactions is supported by tissue recombination experiments. Prostate epithelia expressing a nonfunctional androgen receptor were equally sensitive to androgen ablation, carried out by castration of host mice, when compared with the control tissue recombinations generated with wild-type mesenchyme and wild-type epithelia (4, 5). Yet mesenchymal cells with a nonfunctional androgen receptor did not even support prostate epithelial development (6). This suggested that the prostatic stroma plays an instructive role in glandular development and potentially influences responsiveness to androgen ablation in prostate cancer progression (5). As a basis to understanding androgen-independent prostate cancer, we investigated the mechanism for prostate epithelial survival in the absence of androgens.

After androgen ablation, the prostate undergoes apoptotic regression. In mouse models, reintroduction of androgens after androgen ablation results in prostate regrowth originating from the proximal ducts. This observation indicates that the proximal ducts are inherently refractory to androgen ablation (7–9). Canonical Wnt signaling is known to play a role in cell survival in many tissues (10–12). Thus, we wanted to investigate a potential role for Wnt signaling in the survival of proximal ductal tissue upon castration. Another growth factor, transforming growth factor-β (TGF-β), is thought to support prostatic apoptosis as its expression coincides with androgen ablation in benign and cancer tissues (13–15). TGF-β binds the TGF-β type II receptor (Tgfbr2) at the cell surface to phosphorylate the TGF-β type I receptor and activate cytoplasmic proteins, predominantly Smad2 and Smad3 (16). Both cooperative and antagonistic interactions of Wnt, androgen, and TGF-β signaling pathways occur in the prostatic epithelia (17–20). However, the role of Wnt and TGF-β signaling on androgen dependence of the prostate is unknown.

We tested the hypothesis that paracrine Wnt signaling regulates stromal-epithelial interactions in response to androgen ablation in a TGF-β-dependent manner using mouse and allografting models. Canonical Wnt signaling involves the activation of cognate frizzled receptors at the cell surface that mediate β-catenin accumulation leading to transcriptional activity in the nucleus (21). Here, we report that canonical Wnt activity is present in the prostatic epithelia of the proximal ducts of the prostate after androgen...
Of TGF-β on the prostate epithelia after androgen ablation, here, we developed a conditional epithelial Tgfbr2 knockout by crossing NKX3.1-Cre mice with Tgfb2flox2/+;flox2/E2 mice (23), termed Tgfbr2NKKX3.1KO. Another valuable tool was the Tgf-Fos-lacZ/34Efu/J mouse model, termed TOPGal, which enabled the visualization of canonical Wnt signaling activity (24). Interestingly, the prostates of Tgfbr2fspKO mice had constitutive Wnt signaling throughout the prostate and were resistant to androgen ablation—induced regression. The 12T7f LADY mouse model served as a transformed epithelial counterpart, expressing SV40 large T antigen in the prostatic epithelia (25). Tissue recombination allografting of the Tgfbr2fspKO prostatic stroma was able to convert the androgen-dependent 12T7f LADY prostatic epithelium to become refractile to androgen ablation. Together, the data provide a mechanism for androgen-independent survival of the prostate epithelia.

Materials and Methods

Transgenic mice. Tgfb2flox2/+;flox2/E2 (23) and Tgfb2flox2/+ mouse c57Bl/6 background were generated as previously described (22). The NKX3.1-Cre mice, also in the c57Bl/6 background, were crossed with Tgfb2flox2/+;flox2/E2 mice to generate the Tgfbr2NKKX3.1KO mouse model. The Tgfbr2NKKX3.1KO mice were further crossed with Rosa26 mice to enable visualization of cells undergoing Cre-mediated recombination. TOPGal mice (24) were purchased from The Jackson Laboratory and crossed with Tgfb2flox2/+;flox2/E2 and Tgfb2flox2/+;wt;Cre;Fsp mouse to generate the Tgfb2flox2/+;flox2/E2/TOPGal and Tgfb2flox2/+;TOPGal mouse models. Prostatic epithelial organoids were generated from 15-wk-old 12T7f LADY mice, at which time they developed high-grade hyperplastic lesions and foci of adenocarcinoma (25, 26). All mice were genotyped from ear punch biopsies. NKX3.1-Cre mice were genotyped using the same Cre primers as the Tgfbr2flox2/+ mice (22). A single ± 200-bp band indicated Cre expression. All other mouse genotyping was performed as previously reported (23–25). Harlan Sprague-Dawley SCID mice were approved by the Vanderbilt Institutional Animal Care and Use Committee.

Cell culture. Tgfb2flox2/+;flox2/E2 and Tgfb2flox2/+ mouse primary prostate stromal cell cultures were generated from prostates of 6-wk-old to 8-wk-old mice, as described previously (27). Cultures grown between passages 10 and 30 were used for experiments. LNCap cells were purchased and grown as recommended by American Type Culture Collection.

Conditioned media experiments and [3H]thymidine incorporation. Conditioned stromal media was generated by plating 750,000 Tgfb2flox2/+;flox2/E2 or Tgfb2flox2/+ mouse cells or for control 3,000,000 LNCap cells on a 100-mm dish similar to previously published reports (28). Tgfb2flox2/+;flox2/E2 and Tgfb2flox2/+ stromal cell cultures were transduced with either green fluorescent protein (GFP; control) or secreted frizzled related protein-2 (SFRP-2) adeno virus at 105 virus particles/mL for 24 h before replacing standard stromal cell culture media with 5% serum containing media to allow virus production in stromal cells. The stromal cells were incubated for 72 h in the stromal cell media containing 10−8 mol/L testosterone or, if indicated, bicalutamide (10−7 mol/L). The stromal conditioned media was transferred to 15 mL conical tubes and stored in −80°C at least 24 h up to 3 wk. The stromal conditioned media was thawed and plated over LNCap cells (10,000 per well) in 24-well plates. The conditioned media was replaced after 72 h of incubation with fresh conditioned media. In select conditions, fresh bicalutamide was also included as part of the conditioned media. After 120 h of incubation of LNCap cells with stromal conditioned media, [3H]thymidine incorporation assays were performed. Three hours before assaying for proliferation, cells were given 2 μCi [3H]thymidine (PerkinElmer) in serum-free RPMI per well. Cells were washed in 1 mL 10% TCA for 10 min thrice then lysed with 300 μL 200 mmol/L. NaOH for 30 min. The cell lysates (100 μL) were measured for [3H]thymidine activity using a scintillation counter (29). All treatment conditions were performed in triplicate.

Immunohistochemistry. Tissues were fixed with 4% paraformaldehyde, embedded in paraffin, and sectioned for histologic analysis. GFP (1:1,000, Santa Cruz Biotechnology), Ki67 (1:3,000; Vector Laboratories), and SV40 antigen Alexa Fluor 594 antibody (1:500, Invitrogen) on a Nikon epifluorescence microscope.

β-Galactosidase tissue staining. Whole mouse prostates were dissected and fixed in 4% PFA for 1 to 2 h, washed in PBS, incubated with X-gal for 3 h at 30°C, washed in PBS, and fixed in 4% PFA overnight. Processed paraffin-embedded tissues were sectioned at 8 μm and counterstained with Nuclear Fast Red (Electron Microscopy Sciences).

Tissue recombination allografting. The tissue recombinations were performed as previously described (30). Epithelial organoids were derived by digesting prostates of 6-wk-old to 12-wk-old wild-type C57Bl/6 mice or 15-wk-old LADY 12T7f mice in 675 units/mL collagenase with 0.04% DNase type I at 37°C for 30 min as previously described (30). The organoids were washed and pipetted into 50 μL collagen with stromal cells from Tgfb2flox2/+;flox2/E2 or Tgfb2flox2/+ mouse prostates and allowed to incubate overnight at 37°C. The tissue recombinants were then allografted under the renal capsule of syngenic C57/BL6 for 5 to 7 wk or SCID mice for 6 wk. Castration of host mice was performed 3 to 7 d before sacrifice as indicated.

RNA purification and reverse transcription–PCR. RNA from cell lysates was purified using the RNeasy mini kit (Qiagen) according to the manufacturer’s directions. Reverse transcription–PCR (RT-PCR) was performed for 32 cycles with the following primer sets: Wnt-2 forward 5′GTCCTGAGGAGATGCACCATGG-3′, reverse 5′CCCGTGGGAGAGGTC-3′, Wnt-3a forward 5′GTCCTGAGGAGATGCACCATGG-3′, reverse 5′CCCGTGGGAGAGGTC-3′, Wnt-7a forward 5′ACTGGTTTCTTGCTGCCGAG-3′, reverse 5′ATGGTTTCTTGCTGCCGAG-3′, Wnt-9a forward 5′ACTGGTTTCTTGCTGCCGAG-3′, reverse 5′TCTGGCTGGGAGGTC-3′, Wnt-11 forward 5′CTGGCTGGGAGGTC-3′, reverse 5′ATGGTTTCTTGCTGCCGAG-3′, Wnt-11 forward 5′CTGGCTGGGAGGTC-3′, reverse 5′ATGGTTTCTTGCTGCCGAG-3′.

Results

Stromal TGF-β responsiveness enables prostatic regression after androgen depletion. Androgen ablation causes prostate regression with a transient elevation of TGF-β expression (13). However, the role of TGF-β on the prostate after androgen ablation is not clear. We first developed a conditional Tgfb2 knockout targeted to the epithelia by crossing NKX3.1-Cre mice with Tgfb2flox2/+;flox2/E2 mice, termed Tgfb2NKKX3.1KO (conditional epithelial Tgfb2 knockout). Further crossing the Tgfb2NKKX3.1KO mice with...
into the Rosa26 line enabled the immunohistochemical localization of β-galactosidase expression associated with Cre-mediated recombination in the prostatic epithelia (Fig. 1A). Because the Tgfbr2NKX3.1KO mice died perinatally, the prostates of these and Tgfbr2floxE2/floxE2 mice were rescued to the renal capsule of syngenic C57BL/6 male hosts. H&E staining revealed little difference in the ductal structures of the Tgfbr2NKX3.1KO prostates compared with Tgfbr2floxE2/floxE2 controls (Fig. 1B). However, the Tgfbr2NKX3.1KO prostates had significantly higher epithelial turnover as shown by the apoptotic TUNEL staining (Fig. 1B, bottom) compared with Tgfbr2floxE2/floxE2 allografts. After castration, there was a further elevation of epithelial TUNEL staining in the Tgfbr2NKX3.1KO prostates as observed in Tgfbr2floxE2/floxE2 allografts. Taken together, there was no significant difference in apoptotic response observed between Tgfbr2floxE2/floxE2 and Tgfbr2NKX3.1KO prostates after castration compared with their intact controls, respectively.

As epithelial TGF-β signaling did not seem to affect androgen responsiveness, the role of stromal TGF-β signaling was studied using the Tgfbr2SKO mouse model (conditional stromal Tgfbr2 knockout). The castration of Tgfbr2SKO prostates resulted in 42% and 55% decrease in the total prostate wet weights, after 7 and 14 days, respectively (Fig. 2A). In contrast, there was a negligible decrease in Tgfbr2SKO prostates wet weight 7 days after castration, with ~20% regression by 14 days. Histologic analysis revealed that, 7 days after castration, the Tgfbr2SKO prostates, with otherwise low cellular turnover, had an expected increase in TUNEL-positive apoptotic cells in both the epithelial and stromal compartments and little evidence of proliferation observed by Ki67 staining (Fig. 2B). Before castration, Tgfbr2SKO mice exhibited slightly higher rates of apoptosis than Tgfbr2SKO controls (1.4-fold), accompanied by significant proliferation consistent with the described PIN phenotype (22). Seven days after castration, prostates from Tgfbr2SKO mice had little apparent epithelial apoptosis, yet remained highly proliferative based on TUNEL and Ki67 staining, respectively. The apparent elevated proliferation of the Tgfbr2SKO stroma coincided with greater stromal expansion compared with Tgfbr2SKO prostates. Together, these data suggested that normal prostate epithelial regression occurs in response to stromal TGF-β signals.

Before further studying the androgen independence of the prostates in Tgfbr2SKO mice, we needed to establish that the epithelial response resulted from the prostatic stroma and not other systemic factors in these mice. The FSP-1 Cre promoter targets a subset of fibroblasts throughout the body, including prostatic fibroblasts (22, 31). We verified the loss of TGF-β responsiveness in Tgfbr2SKO cultured stromal cells by immunolocalization of Smad2 (Fig. 3A). A tissue recombination allograft...
The increase in TUNEL-positive Tgfbr2fspKO epithelia after castration (n = 5). B, 3 d after castration, DL prostate lobes of Tgfbr2floxE2/floxE2 and Tgfbr2fspKO mice were subjected to TUNEL staining (brown), indicating apoptotic cells and Ki67 staining (brown) indicating proliferative cells. Hematoxylin (blue) was used as a nuclear counter stain. The stromal (S) compartment is indicated and black arrows indicate positively stained epithelial cells. Prostates were dissected from 5-wk-old to 7-wk-old male mice. Dorsolateral lobes are shown and these effects are consistent with all other lobes (n = 6). The increase in TUNEL positive Tgfbr2spKO epithelia after castration was significantly greater than Tgfbr2floxE2/floxE2 epithelia (P value = 0.0152). The level of Ki67 positive Tgfbr2spKO epithelia after castration was significantly greater than Tgfbr2floxE2/floxE2 epithelia (P = 0.0003).

Figure 2. Tgfbr2fspKO prostates lose androgen responsiveness after androgen ablation. A, percentage change in total prostate weight is shown 7 and 14 d after castration (Cx). Average Tgfbr2floxE2/floxE2 and Tgfbr2fspKO total wet prostate weights are shown as a percentage of the respective total prostate weight from intact Tgfbr2floxE2/floxE2 (Flox) and Tgfbr2fspKO (KO) mice (n = 5). B, 3 d after castration, DL prostate lobes of Tgfbr2floxE2/floxE2 and Tgfbr2fspKO mice were subjected to TUNEL staining (brown), indicating apoptotic cells and Ki67 staining (brown) indicating proliferative cells. Hematoxylin (blue) was used as a nuclear counter stain. The stromal (S) compartment is indicated and black arrows indicate positively stained epithelial cells. Prostates were dissected from 5-wk-old to 7-wk-old male mice. Dorsolateral lobes are shown and these effects are consistent with all other lobes (n = 6). The increase in TUNEL positive Tgfbr2spKO epithelia after castration was significantly greater than Tgfbr2floxE2/floxE2 epithelia (P value = 0.0152). The level of Ki67 positive Tgfbr2spKO epithelia after castration was significantly greater than Tgfbr2floxE2/floxE2 epithelia (P = 0.0003).

The next step was to determine if the role of the stromal cells in the phenotype observed. The tissue recombination technique consisted of combining cultured stromal cells derived from Tgfbr2floxE2/floxE2 or Tgfbr2spKO prostates with epithelial organoids isolated by digesting mature wild-type C57BL/6 mouse prostates. The tissue recombiant were allogerafted to the subrenal capsules of syngeneic male mice (32). Five weeks after grafting, the Tgfbr2floxE2/floxE2 and Tgfbr2spKO stromal cells organized themselves around the epithelial organoids to form prostatic glands (Fig. 3A). Seven days after castration of the hosts, there was a 6-fold increase in TUNEL-positive epithelium in the Tgfbr2floxE2/floxE2 stroma-associated glands (Fig. 3C, Note, in comparison, the Tgfbr2spKO stroma-associated glands did not show a significant increase in TUNEL-positive epithelium. Ki67 staining indicated minimal proliferation in recombinants associated with Tgfbr2floxE2/floxE2 stroma after castration (Fig. 3D). In contrast, the recombinants associated with Tgfbr2spKO stroma had greater epithelial proliferation after castration. Collectively, castration of the host mice resulted in regression of the allografted tissue recombinants associated with Tgfbr2floxE2/floxE2, but not Tgfbr2spKO stromal cells. These observations further supported that the androgen ablation refractile phenotype of our Tgfbr2spKO mice resulted from interactions within the prostate microenvironment.

Proximal ductal epithelial activation of Wnt signaling after androgen ablation mediates stromal-epithelial cross-talk. The next step was to determine how TGF-β signaling within the stroma was responsible for the observed regression in the Tgfbr2floxE2/floxE2 or lack thereof in the Tgfbr2spKO mouse prostates. The proximal ducts of the prostate remain viable as the distal ducts regress in the absence of androgen signaling. Up-regulation of Wnt ligands and activating mutations of β-catenin in prostate cancer epithelium is a potential mechanism for androgen refractory prostatic epithelial proliferation (33–35). To address the potential of a Wnt signaling mechanism to support the androgen-independent prostate survival phenotype observed, we developed a Tgfbr2spKO/TOPGal mouse model (conditional stromal Tgfbr2 knockout with a canonical Wnt signaling reporter). Intact and castrated male Tgfbr2floxE2/floxE2/TOPGal and Tgfbr2spKO/TOPGal prostates were subjected to whole mount β-galactosidase staining to visualize canonical Wnt activity. In whole mount staining of prostates from intact Tgfbr2floxE2/floxE2/TOPGal mice, β-galactosidase expression was not detected (Fig. 4A). However, 3 days after castration, β-galactosidase activity was detected exclusively in the proximal ducts of the prostate indicating activated β-catenin signaling. This was further supported by elevated immunolocalization for β-galactosidase expression in the proximal glands of Tgfbr2floxE2/floxE2/TOPGal prostates after castration (Supplementary Fig. S2). By the 7th day after castration, little β-galactosidase activity was detected in Tgfbr2spKO/TOPGal prostates (data not shown). In contrast to that observed in Tgfbr2floxE2/floxE2/TOPGal prostates, Fig. 4A showed that the Tgfbr2spKO/TOPGal prostates had β-galactosidase expression in the entire gland before castration with further elevated expression after castration. In both Tgfbr2floxE2/floxE2/TOPGal and Tgfbr2spKO/TOPGal prostates, only the epithelial compartment showed strong positive β-galactosidase activity (Fig. 4B and C). Costaining for TUNEL and β-galactosidase in Tgfbr2floxE2/floxE2/TOPGal fcox prostate glands, 4 days after castration, illustrated that the epithelia expressing β-galactosidase did not overlap with epithelia undergoing apoptosis (Fig. 4D). This finding suggested that the epithelium in the proximal glands supported canonical Wnt activity during normal prostatic regression after androgen ablation. In addition, the hormone refractory Tgfbr2spKO prostates supported constitutive paracrine canonical Wnt signaling. The coincident localization of canonical Wnt signaling in Tgfbr2floxE2/floxE2/TOPGal prostates and the reported region surviving androgen ablation supported the possibility of a causal relationship between the two events.

To determine if the observed epithelial Wnt activity could be due to stromal regulation of Wnt ligand production, Tgfbr2floxE2/floxE2 and Tgfbr2spKO cultured prostatic stromal cells were treated with an androgen receptor antagonist, bicalutamide. The expression of Wnt ligands was measured after androgen ablation over a time course of 5 days by semiquantitative RT-PCR. There was a transient increase in Wnt-2, Wnt-3a, and Wnt-5a 1 and 3 days after bicalutamide treatment of Tgfbr2floxE2/floxE2/TOPGal stromal cells, with a decrease in expression by 5 days (Fig. 5A). A similar trend was seen with Tgfbr2spKO stromal cells, but with elevated basal expression for Wnt-2, Wnt-3a, and Wnt-5a. Wnt-9a and Wnt-11 expression were unchanged in both stromal cell types under the same conditions. When Tgfbr2floxE2/floxE2 stromal cells were treated with bicalutamide and TGF-β, there was a lack of Wnt expression compared with treatment with bicalutamide alone (data not shown). Thus, inhibiting either the androgen or the TGF-β signaling pathway could induce Wnt-2, Wnt-3a, and Wnt-5a gene expression in prostatic stromal cells.

To determine the role of paracrine Wnt signaling on the epithelial response to androgen ablation, the proliferation of prostatic epithelial cells was measured in the presence of conditioned media collected from either Tgfbr2floxE2/floxE2 or Tgfbr2spKO stromal cell cultures. As seen in Fig. 5B, bicalutamide...
treatment had little proliferative effect on either stromal cell type grown in culture, as measured by [3H]thymidine incorporation assays. As anticipated, the Tgfbr2−/− stromal cells were notably more proliferative than the Tgfbr2+/−/− stromal cells. Bicalutamide treatment decreased the proliferation of the androgen-responsive prostate cancer line, LNCaP epithelial cells, as expected. Therefore, LNCaP cells were subsequently used as the target epithelium to assess proliferative responsiveness to conditioned stromal media treatment and androgen ablation. Control GFP-transduced Tgfbr2−/− stromal media had lower proliferative response on LNCaP cells compared with the enhanced proliferation using the GFP-transduced Tgfbr2+/−/− conditioned media (Fig. 5C). Wnt expression by the stroma was antagonized through adenoviral expression of SFRP-2 to stromal cell cultures. The SFRP-2 transduced Tgfbr2+/−/− conditioned media significantly decreased proliferation of LNCaP cells compared with GFP-transduced Tgfbr2+/−/−-conditioned media. Bicalutamide treatment to the Tgfbr2+/−/− stroma during generation of conditioned media (Bi on Stro) further decreased LNCaP proliferation, demonstrating the paracrine effect of androgen ablation on epithelial cells. However, most dramatic was the direct effect of androgen ablation on the epithelia with SFRP-2 transduced Tgfbr2+/−/−-conditioned stromal media (Bi on Epi), which resulted in a 50% decrease in LNCaP proliferation compared with the GFP-transduced Tgfbr2+/−/−-conditioned stromal media control. This suggested that Wnt ligands expressed by both the GFP-transduced Tgfbr2+/−/−-conditioned stromal media (Bic on Epi), which resulted in a 50% decrease in LNCaP proliferation compared with the GFP-transduced Tgfbr2+/−/−-conditioned stromal media.
Figure 4. Inhibiting TGF-β signaling in the prostatic stroma results in constitutive Wnt signaling throughout the prostatic epithelia associated with survival after androgen ablation. Six-week-old TOPGal mice were stained for β-galactosidase activity and anterior and dorsolateral prostate lobes from intact and 3-d castrated mice were analyzed. A, Tgfrb2^{NKX3.1KO}/TOPGal and Tgfrb2^{NKX3.1KO}/TOPGal prostates from intact and 3 d after castration were stained for β-galactosidase activity (blue) and imaged as whole mounts (n = 8) to show areas of canonical Wnt signaling activity. B, paraffin sections of the β-galactosidase–stained intact Tgfrb2^{NKX3.1KO}/TOPGal and Tgfrb2^{NKX3.1KO}/TOPGal distal prostates were counterstained with Nuclear Fast Red. Asterisks indicate the stromal compartment. (Prostates from intact and castrated Tgfrb2^{NKX3.1KO}/TOPGal mice were similar. Only the intact Tgfrb2^{NKX3.1KO}/TOPGal tissue section is shown.) C, 3 d after castration, paraffin sections of the β-galactosidase–stained Tgfrb2^{NKX3.1KO}/TOPGal prostate were counterstained with Nuclear Fast Red. Tissue section shows the distal prostate as it is regressing toward the proximal area. Asterisks indicate the stromal compartment. D, after castration of control Tgfrb2^{NKX3.1KO}/TOPGal mice, the β-galactosidase activity–stained prostate sections were counterstained for TUNEL (brown) indicated with black arrows and β-galactosidase expression (blue; n = 4). Tissue section shows the distal prostate as it is regressing toward the proximal area. Asterisks indicate the stromal compartment, and black arrows indicate the epithelia with no β-galactosidase activity after castration (n = 8).

Discussion

Our study showed that stromal responsiveness to TGF-β allows androgen sensitivity in the prostate epithelia through paracrine Wnt signaling. The direct role of TGF-β signaling on the prostate epithelia after castration was minimal based on histologic and apoptotic differences between the Tgfrb2^{NKX3.1KO} and Tgfrb2^{foxE2/foxE2} prostates. It is possible that compensatory signaling by activin and its cognate receptors may provide Smad protein activity similar to TGF-β. However, the conditional knockout of the TGF-β type II receptor in fibroblasts, in the Tgfrb2^{lepKo} mice and tissue recombinants, indicated the importance of TGF-β responsiveness in the stromal compartment after castration. Further crossing of the Tgfrb2^{lepKo} mice to the TOPGal reporter gene mouse model showed the regulatory role of stromal TGF-β signaling on Wnt signaling in epithelial cells refractory to androgen ablation. The Tgfrb2^{lepKo} stromal cells themselves acquired a more proliferative phenotype (presumably due to the loss of the growth inhibitory TGF-β signaling) and promoted nearby epithelia to increase their rate of proliferation and overcome hormonal dependence. The mechanisms behind the observed phenomena highlight a stromal derived paracrine Wnt signaling axis that is triggered upon androgen ablation. The stark proximal ductal localization of canonical Wnt signaling activity in control prostates after castration indicated duplicity of responses to androgen ablation, one of survival and another for cell death.
Thus, the data indicate that the role for TGF-β signaling after androgen ablation is to suppress Wnt signals in much of the distal prostate to enable regression.

Previous studies have shown that Wnt genes or proteins in the Wnt signaling pathway are up-regulated or mutated in androgen-independent prostate cancers (10, 11). Castration provided a transient elevation of canonical Wnt signaling in Tgfbr2floxE2/floxE2 prostates (Fig. 4). In parallel, Tgfbr2floxE2/floxE2 prostatic stromal cells transiently express specific Wnt genes in response to an androgen antagonist, bicalutamide (Fig. 5). In contrast, Tgfbr2fspKO stromal cells had elevated basal expression of Wnt-2, Wnt-3a, and Wnt-5a. Recently, preosteoblasts were reported to induce Wnt signaling as a result of androgen stimulation, and through paracrine signaling, the preosteoblasts subsequently increased the proliferation of prostate cancer cells in a coculture system in vitro (38). As preosteoblasts and prostatic stromal cells are both of mesenchymal origin, together with the results presented, this suggests a directional regulation of paracrine Wnt signaling by...
androgens. LNCaP cells, used in our coculture studies, are human prostate cancer lymph node metastatic lesion that lack a functional TGF-β type II receptor and have a functional, yet mutant, androgen receptor (39). The LNCaP cells, analogous to the Tgfbr2NKX3.1KO prostates, enabled us to show that androgen responsiveness mediated by the stroma is not dependent on epithelial TGF-β signaling. Antagonizing Wnt signaling in the absence of androgen ablation in Tgfbr2floxE2/floxE2 and Tgfbr2fspKO mature mouse prostates were transduced with SFRP-2 adenovirus and allografted in the renal capsules of male SCID mice. Host mice were castrated for 3 d. Tissues were harvested on day 6 (n = 12) and subjected to H&E staining (top), as well as TUNEL staining (bottom) for apoptotic cells (brown). B, Tgfbr2floxE2/floxE2 or Tgfbr2fspKO mature mouse prostates were transduced with SFRP-2 adenovirus and allografted in the renal capsules of male SCID mice. Host mice were castrated for 3 d. Tissues were harvested on day 6 (n = 12) and subjected to H&E staining (top), as well as TUNEL staining (bottom) for apoptotic cells (brown). Percentage of positive epithelial TUNEL-positive staining was not statistically different between GFP-Tgfbr2floxE2/floxE2 and SFRP-2–Tgfbr2floxE2/floxE2 allografts (P = 0.2819). Percentage of positive epithelial TUNEL positive staining in SFRP-2–Tgfbr2floxE2/floxE2 allografts was statistically greater than GFP-Tgfbr2floxE2/floxE2 allografts (P = 0.0373). C, tissue recombinations of 12T7f LADY epithelial organoids and Tgfbr2fspKO prostatic stromal cells were allografted in SCID mice for 6 wk. The host mice were given GFP adenovirus throughout the grafting period. Host mice were castrated 7 d before harvesting the prostatic grafts. Tissue recombinants were harvested at week 6 (n = 4) and subjected to H&E staining (top), as well as TUNEL staining (bottom) for apoptotic cells (brown). D, tissue recombinations of 12T7f LADY epithelial organoids and Tgfbr2fspKO prostatic stromal cells were allografted in SCID mice for 6 wk. The host mice were given SFRP-2 adenovirus throughout the grafting period. Host mice were castrated 7 d before harvesting the prostatic grafts. Tissue recombinants were harvested at week 6 (n = 4) and subjected to H&E staining (top), as well as TUNEL staining (bottom) for apoptotic cells (brown). Percentage of positive epithelial TUNEL-positive staining in tissue recombinations of 12T7f LADY epithelial organoids and SFRP-2–Tgfbr2fspKO allografts was statistically greater than those in tissue recombinations of 12T7f LADY epithelial organoids and GFP-Tgfbr2fspKO allografts (P = 0.0472). Scale bar, 25 μm.

Figure 6. Inhibition of Wnt signaling restores Tgfbr2fspKO prostate responsiveness to androgen ablation. A, Tgfbr2floxE2/floxE2 or Tgfbr2fspKO mature mouse prostates were transduced with GFP adenovirus and allografted in the renal capsules of male SCID mice. Host mice were castrated for 3 d. Tissues were harvested on day 6 (n = 12) and subjected to H&E staining (top), as well as TUNEL staining (bottom) for apoptotic cells (brown). B, Tgfbr2floxE2/floxE2 or Tgfbr2fspKO mature mouse prostates were transduced with SFRP-2 adenovirus and allografted in the renal capsules of male SCID mice. Host mice were castrated for 3 d. Tissues were harvested on day 6 (n = 12) and subjected to H&E staining (top), as well as TUNEL staining (bottom) for apoptotic cells (brown). Percentage of positive epithelial TUNEL-positive staining was not statistically different between GFP-Tgfbr2floxE2/floxE2 and SFRP-2–Tgfbr2floxE2/floxE2 allografts (P = 0.2819). Percentage of positive epithelial TUNEL positive staining in SFRP-2–Tgfbr2floxE2/floxE2 allografts was statistically greater than GFP-Tgfbr2floxE2/floxE2 allografts (P = 0.0373). C, tissue recombinations of 12T7f LADY epithelial organoids and Tgfbr2fspKO prostatic stromal cells were allografted in SCID mice for 6 wk. The host mice were given GFP adenovirus throughout the grafting period. Host mice were castrated 7 d before harvesting the prostatic grafts. Tissue recombinants were harvested at week 6 (n = 4) and subjected to H&E staining (top), as well as TUNEL staining (bottom) for apoptotic cells (brown). D, tissue recombinations of 12T7f LADY epithelial organoids and Tgfbr2fspKO prostatic stromal cells were allografted in SCID mice for 6 wk. The host mice were given SFRP-2 adenovirus throughout the grafting period. Host mice were castrated 7 d before harvesting the prostatic grafts. Tissue recombinants were harvested at week 6 (n = 4) and subjected to H&E staining (top), as well as TUNEL staining (bottom) for apoptotic cells (brown). Percentage of positive epithelial TUNEL-positive staining in tissue recombinations of 12T7f LADY epithelial organoids and SFRP-2–Tgfbr2fspKO allografts was statistically greater than those in tissue recombinations of 12T7f LADY epithelial organoids and GFP-Tgfbr2fspKO allografts (P = 0.0472). Scale bar, 25 μm.

We showed that activated canonical Wnt signaling helps to limit prostatic regression. It is known that Wnt ligands bind Frizzled receptors on the epithelial surface and transmit signals through the canonical pathway that activates β-catenin/TCF in the nucleus (40). Activating mutations in β-catenin have been identified to affect androgen receptor transcriptional activity and ligand specificity (33, 34). Based on the specific TCF/β-catenin activity in the proximal prostatic ducts of the castrated Tgfbr2floxE2/floxE2/TOPGal mice, the mechanism for the survival of the proximal ducts may be through an initial activation of epithelial canonical Wnt signaling. Comparing the Tgfbr2 floxE2/floxE2/TOPGal and Tgfbr2fspKO/TOPGal mice, it was evident that TGF-β signaling is important to regulate the spatial localization of Wnt signaling to enable regression of the distal ducts in a temporal coordination with androgen signaling. This is consistent with studies showing androgen-induced regeneration occurring at the distal tips of the prostate (41). One mechanism by which the localization of Wnt signaling is limited could be due to secreted Wnt inhibitors (e.g., SFRP-2, DKK-1) in the distal glands. Long-term androgen ablation responses were not studied, as the focus of the study was to determine the role of the
Stromal-epithelial interactions have proved to be important in embryonic development and tumorigenesis. Based on the Knudson multihit hypothesis of tumor development, we attempted to further the progression of the PIN lesions associated with LADY 12T7f epithelia, expressing the large T antigen, by recombining them with Tgfbr2SpKO prostatic stromal cells, as the second mutagenic hit (44). Figure 6 illustrated that the Wnt signaling associated with the Tgfbr2SpKO cells not only enabled the PIN lesions to progress to adenocarcinoma, but also enabled the epithelia to become resistant to androgen ablation. Inhibition of Wnt signaling with SFRP-2 seemed to restore androgen sensitivity and decrease tumorigenicity of the resulting tumors. Future prostate cancer therapies would most likely benefit by not only antagonizing the traditional androgen signaling pathway, but also inhibiting Wnt signaling. This would allow therapies to target both the epithelial and stromal compartments, as well as androgen-dependent and androgen-independent tumor cells.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
7. Prins GS, Cooke PS, Birch L, et al. Androgen receptor expression and 5α-reductase activity along the proxi-
9. Rouleau M, Leger J, Tenniswood M. Ductal heteroge-
12. Mount JG, Muzylak M, Allen S, Althnaia M, McGonnell IM, Price JS. Evidence that the canonical Wnt signalling pathway regulates deoxy刹ter gener-
13. Kyriianou N, Isaacs JT. Expression of transforming growth factor-β in the rat ventral prostate during castration-induced programmed cell death. Mol Endo-
15. Bradin G, ten Dijke P, Funa K, Heldin CH, Landstrom M. Increased smad expression and activation are
19. Kang HY, Lin HK, Hu YC, Yeh S, Huang KE, Chang C. From transforming growth factor-β signaling to andro-
21. Widlitz R. Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Fac-
tors 2005;23:1116–11.
22. Blowmark NA, Chytli A, Plieh D, et al. TGF-β sig-
24. DasGupta R, Fuchs E. Multiple roles for activated LEF/TCP transcription complexes during hair follicle development and differentiation. Development (Cam-

www.aacrjournals.org

Downloaded from cancerres.aacrjournals.org on July 5, 2021. © 2008 American Association for Cancer Research.

Stromal Transforming Growth Factor-β Signaling Mediates Prostatic Response to Androgen Ablation by Paracrine Wnt Activity
