Effect of Ablation or Inhibition of Stromal Matrix Metalloproteinase-9 on Lung Metastasis in a Breast Cancer Model Is Dependent on Genetic Background

Michelle D. Martin, Kathy J. Carter, Sharon R. Jean-Philippe, Mayland Chang, Shahriar Mobashery, Sophie Thiolloy, Conor C. Lynch, Lynn M. Matrisian, and Barbara Fingleton

Abstract

Matrix metalloproteinases (MMP) are a family of enzymes with a myriad of functions. Lately, we have come to realize that broad-spectrum inhibition of these enzymes, as was tried unsuccessfully in multiple phase III trials in cancer patients, is likely unwise given the protumorigenic and antitumorigenic functions of various family members. Here, we used the multistage mammary tumor model MMTV-PyVT to investigate roles for either MMP7 or MMP9 in tumor progression. We found no effect of genetic ablation of MMP7 or MMP9 on the multifocal tumors that developed in the mammary glands. Lack of MMP7 also had no effect on the development of lung metastases, suggesting that MMP7 is irrelevant in this model. In contrast, MMP9 deficiency was associated with an 80% decrease in lung tumor burden. The predominant cellular source of MMP9 was myeloid cells, with neutrophils being the largest contributor in tumor-bearing lungs. Experimental metastasis assays corroborated the role of host-derived MMP9 in lung metastasis and also facilitated determination of a time frame most relevant for the MMP9-mediated effect. The lung tumors from MMP9-deficient mice showed decreased angiogenesis. Surprisingly, the antitumorigenic outcome of MMP9 ablation seemed to be dependent on strain. Only mice that had genetic background derived from C57BL/6 showed reduced metastasis, whereas mice fully of the FVB/N background showed no significant effect. These strain-specific responses were also observed in a study using a highly selective pharmacologic inhibitor of MMP9 and thus suggest that responses to MMP inhibition are controlled by genetic differences.

Introduction

The role of proteases in tumor progression has traditionally been viewed as limited to invasive ability; however, that paradigm has been challenged in recent years by elegant in vivo studies, which have revealed multiple processes influenced by protease expression and function (1, 2). These processes include tumor promotion, growth, angiogenesis, resistance to apoptosis, growth at secondary sites, as well as invasive capabilities. In addition to awareness of an increased range of functions, there is also recognition of the array of different cell types that can produce proteases. Tumor cells, tumor-associated fibroblasts, endothelial cells, and various cells of the myeloid and lymphoid classes have all been shown to supply certain proteolytic enzymes within a tumor microenvironment (1).

Various in vivo models of tumor progression have been used to illustrate functions of proteases (1, 3). Early studies indicated strong protumorigenic roles and provided support for the clinical testing of pharmacologic inhibitors of matrix metalloproteinases (MMP) in different cancers. Unfortunately, all phase III trials of such agents were unsuccessful (3, 4). One factor that must be considered is the misleading data obtained from preclinical mouse models. There is now a prevalent belief that complex genetic models that recapitulate the multistage nature of tumor progression and that allow more faithful representation of the heterogeneous nature of human tumors will be more predictive than the xenograft models that have generally been used preclinically (5).

The relevance of the MMP-PyVT model to human breast cancer has been illustrated by both genetic and histologic studies (7, 8), which indicated a strong similarity to stages of human ductal adenocarcinomas (8). Microarray analysis identified a set of 16 genes in MMTV-PyVT tumors that matched 16 of the 17 genes proposed as a metastatic signature of human breast cancers (7). We chose to use this model to ascertain the roles of the proteases MMP7 and MMP9 both in the setting of genetic ablation and following pharmacologic inhibition.

MMP7 has frequently been described as an epithelial-expressed protease and is often strongly expressed by glandular epithelium of the intestine, stomach, and prostate and in tumors arising from these cells (9, 10). Expression of MMP7 was reported in human breast cancers (11), including apparently normal breast glandular epithelium adjacent to tumors (12). Targeting of MMP7 expression to mouse mammary glands using the MMTV promoter results in the development of hyperplastic lesions in multiparous females, whereas crossing MMTV-MMP7 mice to oncogenic MMTV-neu...
mice results in significant acceleration of the tumor phenotype in virgin females (13).

MMP9, also known as gelatinase B, has been associated with tumor progression in multiple studies (4, 14). In particular, several analyses show that expression of MMP9 is a prognostic indicator in breast cancer patients (15–17). As a type IV collagenase, it has been regarded as a critical enzyme for destruction of the basement membrane (18). Some of the cell types expressing the highest levels of MMP9 are inflammatory cells, such as neutrophils and macrophages (1, 14, 19).

Here, we examine the effects of two different MMPs in the MMTV-PyVT model. Our results indicate that MMP7 is not significant in this model of mammary tumorigenesis, whereas MMP9 produced predominantly by inflammatory cells is necessary for efficient development of metastases. Further, the contribution of MMP9 is strain dependent, as FVB/N mice show no effect of either genetic ablation or pharmacologic inhibition of MMP9 on lung metastasis, in contrast to mice of the C57BL/6 strain. This has important ramifications for analysis of the effects of protease inhibition both in mouse models and in the genetically diverse human population.

Materials and Methods

Animals. All animal experiments were conducted following approval by the institutional animal use and care committee. FVB/N-Tg (MMTV-PyVT^{PyVT⁺}) male mice were obtained from The Jackson Laboratory and crossed with either mmp7^{−/-} or mmp9^{−/-} females on the C57BL/6 background. F1 PyVT⁺ male pups were then mated to C57BL/6 mmp7^{−/-} or mmp9^{−/-} females to produce the study cohorts of F2 female PyVT⁺; mmp7^{−/-}, PyVT⁺; mmp9^{−/-}, PyVT⁺; mmp9^{−/-} and PyVT⁺; mmp9⁺ animals. All PyVT⁺; mmp9^{−/-} animals were littermates of the corresponding PyVT⁺; mmp^{−/-} animals. Study mice were euthanized at 18 wk or earlier if tumor burden became too high. Study animals were palpated weekly and tumor diameters in two dimensions were obtained using calipers. At necropsy, tumors were removed and a wet weight was obtained for each. One tumor-filled gland was fixed in 10% buffered formalin for histologic analysis. Lungs were inflated with 1.5 mL Bouin's fixative (Ricca Chemical) and removed for enumeration of surface metastases.

Rag2^{−/-} mice (C57BL/6) were obtained from Taconic Farms, Inc. Rag1^{−/-} mice as well as Mmp9^{−/-} mice, both FVB/N, were kindly provided by Dr. Lisa Coussens (Department of Pathology, University of California at San Francisco, San Francisco, CA).

Histology. Lung tissues were embedded in paraffin and 5-μm-thick transverse sections were cut and stained with H&E. For assessment of tumor burden, the area of each section that was tumor, as well as the total transverse sections were cut and stained with H&E. For assessment of tumor burden, the area of each section that was tumor, as well as the total weight of all tumor per mouse over time, number of mammary glands containing visible tumors ("multiplicity"), and total weight of all mammary tumors per animal ("tumor burden") were assessed for expression of MMP9 using rabbit anti-MMP9 (Abcam), for efficient development of metastases. Further, the contribution of MMP9 is strain dependent, as FVB/N mice show no effect of either genetic ablation or pharmacologic inhibition of MMP9 on lung metastasis, in contrast to mice of the C57BL/6 strain. This has important ramifications for analysis of the effects of protease inhibition both in mouse models and in the genetically diverse human population.

Results

Primary tumor growth is unaffected by MMP7 or MMP9 deficiency. To assess the contribution of either MMP9 or MMP7 to mammary tumor development, we crossed MMTV-PyVT mice on the FVB/N background with MMP9 or MMP7-null animals on the C57BL/6 background. Second-generation female littermates, either wild-type (WT) or null with respect to the protease and all carrying a single PyVT allele, were included in the study. Primary tumor characteristics assessed were time to appearance of the first palpable mammary mass ("tumor latency"), growth rate of the first tumor per mouse over time, number of mammary glands containing visible tumors ("multiplicity"), and total weight of all mammary tumors per animal ("tumor burden"). None of these variables was affected by protease ablation (Fig. 1A–D). Additionally, the histologic appearance of the mammary tumors was similar among the different groups (data not shown). Hence, in this model of mammary tumorigenesis, neither MMP9 nor MMP7 plays an essential role in primary tumor development.

Lung metastasis is attenuated in the absence of MMP9. Because the MMTV-PyVT tumor model shows development of spontaneous metastasis to the lungs, we next examined the tumor...
burden in the lungs of the protease-deficient mice and their WT littermates. This was done in two ways: first, by obtaining a surface tumor count, and second, by assessing tumor area in histologic sections from multiple depths throughout the lungs.

In mice lacking MMP7, there was no difference in lung tumor burden in comparison with littermate controls (Fig. 1E). Together with the primary tumor data, we conclude that in this mouse model of mammary tumor progression, MMP7 is a nonessential protease. In contrast, lack of MMP9 had a significant effect on model of mammary tumor progression, MMP7 is a nonessential protease. In contrast, lack of MMP9 had a significant effect on model systems. In our samples, there was no difference between MMP9 deficiency have been reported in some (21) but not all (22) mouse models. In mice lacking MMP7, there was no difference in lung tumor burden in comparison with littermate controls (Fig. 1E). To further examine the metastatic lesions, we sectioned the lungs to obtain representative tissue from multiple depths. These were then assessed morphometrically to determine the percent area of lung parenchyma occupied by tumor lesions. Similarly to the gross surface counts, we observed a significant reduction in tumor burden in the lungs of MMP9-null MMTV-PyVT mice compared with the littermate controls (Supplementary Fig. S1). The 76% reduction in total tumor area in the lungs correlated well with the 80% reduction in areas of necrosis or at the tumor periphery were positive. Based on appearance, we speculated that these cells were macrophages and neutrophils. In the lung tumor foci, many more MMP9-positive cells were apparent, but again, these seemed to be myeloid rather than tumor cells (Fig. 2B). To confirm the identification of the cells expressing MMP9, we used double-staining immunofluorescence protocols with MMP9 and an anti-neutrophil antibody to identify macrophages or an anti-neutrophil antibody to identify neutrophils (Fig. 2C and D). Although there were some MMP9-positive macrophages, the majority of MMP9-positive cells were identified as neutrophils (Fig. 2C and D). Defects in neutrophil migration associated with MMP9 deficiency have been reported in some (21) but not all (22) model systems. In our samples, there was no difference between the number of neutrophils in the lungs of WT and MMP9-null MMTV-PyVT mice (data not shown), suggesting that MMP9 is not essential for neutrophil recruitment or migration to tumor-bearing lungs.

To verify the contribution of host MMP9 to the metastatic process, we turned to experimental metastasis assays. We first generated a series of cell lines from mammary tumors that developed in FVB/N MMTV-PyVT mice. The cell lines were characterized with

Host MMP9 controls lung metastasis. To ascertain the cell types within primary and metastatic tumor foci that express MMP9, we performed immunohistochemical analysis. As can be seen in Fig. 2A, tumor cells within the mammary gland were negative, whereas some infiltrating cells present in areas of necrosis or at the tumor periphery were positive. Based on appearance, we speculated that these cells were macrophages and neutrophils.

![Diagram](https://via.placeholder.com/150)

Figure 1. A, tumor latency curves for MMTV-PyVT;MMP7/−/− (○) and MMTV-PyVT;MMP9/−/− (●) mice and their corresponding littermates MMTV-PyVT;MMP7+/− (•) and MMTV-PyVT;MMP9+/− (■) controls. For each set, the WT and corresponding null groups overlap each other. B, growth rate of the first palpable mammary tumor arising in MMTV-PyVT;MMP7/−/− (n = 7), MMTV-PyVT;MMP7+/− (n = 8), MMTV-PyVT;MMP9/−/− (n = 8), and MMTV-PyVT;MMP9+/− (n = 9) mice. C, number of mammary glands with frank tumors at time of sacrifice in MMTV-PyVT;MMP7/−/− (n = 18), MMTV-PyVT;MMP7+/− (n = 12), MMTV-PyVT;MMP9/−/− (n = 19), and MMTV-PyVT;MMP9+/− (n = 20) mice. D, total mammary tumor burden (wet weight) of MMTV-PyVT;MMP7/−/− (n = 18), MMTV-PyVT;MMP7+/− (n = 12), MMTV-PyVT;MMP9/−/− (n = 19), and MMTV-PyVT;MMP9+/− (n = 20) mice. E, number of tumor foci evident on lung surfaces of MMTV-PyVT;MMP7/−/− (●, n = 10), MMTV-PyVT;MMP7+/− (■, n = 6), MMTV-PyVT;MMP9/−/− (▲, n = 18), and MMTV-PyVT;MMP9+/− (▲, n = 17) mice. F, area of each histologically identified tumor in lungs of MMTV-PyVT;MMP9/−/− (●, n = 795 tumors in 12 mice) and MMTV-PyVT;MMP9+/− (▲, n = 188 tumors in 10 mice) mice. Note: all four groups of animals are shown on single graphs for ease of visualization; however, statistical analysis only compared each null group with the appropriate WT control littermate group.
respect to expression of the epithelial marker E-cadherin and lack of vimentin expression and for their ability to grow in different in vivo organ environments. As listed in Supplementary Table S1, the three cell lines all show epithelial characteristics and are able to grow in different organ environments, albeit with differing growth kinetics. We have predominantly used the 17L3C cell line for our studies; however, all in vivo experiments were repeated also with the R221A line. These lines were transduced with a retroviral vector encoding luciferase to enable us to follow real-time tumor growth in vivo.

Because the cell lines were derived from FVB/N mice and the MMP9−/− animals were on the C57BL/6 genetic background, we generated immunodeficient MMP9-null and WT controls by crossing the MMP9−/− mice with Rag2-null mice. I.v. injection of 1 × 10⁶ tumor cells into the tail vein of WT mice resulted in multiple lung tumors at the 3-week study termination point. In contrast, the same number of tumor cells in the MMP9-null mice resulted in a significant decrease in lung tumor burden (Fig. 3A). In addition, the tumors in the MMP9−/− were significantly smaller than in the WT mice (Fig. 3B). To determine at what time point MMP9 expression was critical, we used luciferase-labeled tumor cells and followed lung tumor burden over time. As can be seen in Fig. 3C and D, luciferase activity was similar in WT and MMP9-null mice until approximately day 10 when the activity started to increase in the WT but remained relatively constant in the MMP9-null animals. Histologic examination of lungs from mice at 21 days after injection confirmed a reduced tumor burden in the MMP9−/− animals (median tumors per mm² = 0.56 in WT mice versus 0.34 in MMP9−/− mice).

Role of MMP9 in outgrowth of lung metastases. Because the imaging studies suggested that the effect of MMP9 in lung metastasis is evident at later stages of outgrowth rather than earlier survival as previously reported for lung adenocarcinomas (23), and we had observed a difference in the size of the lung tumor foci in the MMTV-PyVT WT versus MMP9+/+ mice, we examined variables of growth and death in the lungs. Both proliferation and apoptosis were significantly higher in the MMTV-PyVT:MMP9+/+ animals than in those that were MMP9 null (Fig. 4A and B). Although there were increases in both processes, the outcome should favor an overall increase in size because proliferation is an exponential process. Similar changes in proliferation were seen with the experimental metastasis model (data not shown).

The increased proliferation and larger tumor size in the presence of MMP9 suggested that angiogenesis might be a relevant process. We used immunostaining for vWF to assess the levels of vasculature within lung tumor foci from both the spontaneous and experimental metastasis settings. Tumor sections from either the MMTV-PyVT (Fig. 4C) or the tail vein–injected mice (Fig. 4D) stained for vWF indicated significantly more blood vessels in the WT tumors. These data agree with multiple reports from other model systems indicating a role for MMP9 in angiogenesis (19, 24, 25). More specifically, our data are supportive of neutrophil-derived MMP9 being proangiogenic (19, 26); however, this is limited to the metastatic site in our model.

Requirement for MMP9 is strain dependent. While performing experimental metastasis assays, we used both Rag2−/− mice on the C57BL/6 background as described above as well as FVB/N mice, which are syngeneic with the PyVT cell lines. Surprisingly, MMP9−/− mice on the pure FVB/N background behaved similarly to WT mice with respect to lung tumor formation, as determined both by luciferase imaging and counting of surface tumors (Fig. 5A–C). Furthermore, in a small study of the transgenic model MMTV-PyVT in MMP9−/− or WT mice of the FVB/N background, we observed no significant effect on lung metastasis (Fig. 5D). Hence, the MMP9-mediated effect is relevant in the C57BL/6 strain but not in the FVB/N strain.
One possible explanation for the difference between the strains is the amount or source of MMP9. However, the MMP9 expression pattern was not different. Additionally, the number of associated inflammatory cells was assessed in the lung tissues of MMTV-PyVT mice of the FVB/N background compared with the mixed background. There was no statistical difference in the number of neutrophils present in tumor-bearing lungs between the two genetic backgrounds (data not shown).

MMP9 ablation phenotype is recapitulated by pharmacologic inhibition. Because a differential effect of MMP9 gene deletion in development of both spontaneous and experimental lung metastasis is evident in C57BL/6, we wondered whether this resulted from null mice never having had MMP9 from conception or from a specific function of MMP9 in the metastatic process. We therefore used SB-3CT, a gelatinase-selective inhibitor that has previously been shown to attenuate tumor growth and metastasis in other models (20, 27), to test whether pharmacologic inhibition of MMP9 would show similar effects. In this study, we used immunocompromised mice (Rag2−/−) in either the FVB/N or C57BL/6 backgrounds. The mice were injected i.v. with luciferase-expressing

Figure 3. A, lung tumor burden in WT and MMP9−/−Rag2-null mice injected via the tail vein with 1 × 10⁶ 17L3C PyVT tumor cells and sacrificed after 3 wk. Tumor burden was assessed histologically. B, size of tumors in lungs of WT and MMP9−/−Rag2-null mice injected via the tail vein with 1 × 10⁶ 17L3C PyVT tumor cells and sacrificed after 3 wk. C, representative images of luciferase activity overlaid on photographs of WT or MMP9−/−Rag2-null mice. Images were generated using the IVIS imaging system as stated in Materials and Methods. D, luciferase activity as measured by IVIS over time in WT and MMP9−/−Rag2-null mice that had been injected with 1 × 10⁶ 17L3C-luc cells.

Figure 4. A, phosphohistone H3 immunostaining in lung tumors from MMTV-PyVT;MMP9+/+ (n = 6) and MMTV-PyVT;MMP9−/− (n = 8) mice. B, TUNEL staining in lung tumors from MMTV-PyVT;MMP9+/+ (n = 9) and MMTV-PyVT;MMP9−/− (n = 9) mice. C, immunostaining for vWF in individual lung tumors of MMTV-PyVT;MMP9+/+ (n = 14 tumors from four mice) and MMTV-PyVT;MMP9−/− (n = 24 from five mice) animals. D, immunostaining for vWF in individual lung tumors of WT (n = 26 tumors from three mice) and MMP9−/− (n = 24 tumors from four mice) Rag2-null mice that had been injected with 1 × 10⁶ 17L3C-luc cells 21 d previously via the tail vein.
17L3C cells and imaged within 4 h to ensure delivery of equivalent numbers of cells to lungs of all animals. The mice were then started on a regimen of daily injections of the drug SB-3CT or the corresponding vehicle for 14 days. During this period, the mice were imaged at days 3, 7, and 14 to assess tumor growth. As can be seen in Fig. 6A and B, treatment of the C57BL/6 mice with the gelatinase inhibitor resulted in a significant attenuation of tumor growth in the lungs. In the FVB/N mice, however, treatment with the inhibitor did not reduce tumor growth; in fact, signal was enhanced (Fig. 6C and D). Thus, as was seen in the null mice, pharmacologic inhibition of MMP9 reduced lung tumor growth in C57BL/6 mice but was ineffective or even stimulatory in FVB/N mice.

Discussion

Here, we have examined the function of two proteases, MMP7 and MMP9, in a mouse model of spontaneously metastasizing breast cancer. Genetic ablation of either of these enzymes did not affect the development or growth of multifocal tumors in

Figure 5. A, representative images of luciferase activity overlaid on photographs of WT or MMP9−/− mice in the FVB/N background. B, luciferase activity as measured by IVIS over time in WT (n = 5) and MMP9−/− (n = 6) mice in FVB/N background that had been injected with 1 × 10^6 17L3C-luc cells. C, number of tumor foci evident on the lung surfaces of WT or MMP9−/− mice in the FVB/N background 3 wk after i.v. tumor injection. D, number of tumor foci evident on the lung surfaces of MMTV-PyVT;MMP9−/− (n = 8) or MMTV-PyVT;MMP9+/+ (n = 6) mice in the FVB/N background at time of sacrifice (14 wk).

Figure 6. A, luciferase imaging of tumor growth in immunodeficient (Rag2−/−) C57BL/6 mice treated with the gelatinase inhibitor SB-3CT or vehicle (10% DMSO) following i.v. injection of 1 × 10^6 17L3C-luc tumor cells. B, graphical representation of the change in luciferase activity, indicative of tumor burden, over time in the tumor-injected C57BL/6 mice exposed to the gelatinase inhibitor SB-3CT (n = 5) or vehicle control (n = 2). C, luciferase imaging of tumor growth in immunodeficient (Rag1−/−) FVB/N mice treated with the gelatinase inhibitor SB-3CT or vehicle following i.v. injection of 1 × 10^6 17L3C-luc tumor cells. D, graphical representation of the change in luciferase activity, indicative of tumor burden, over time in the tumor-injected FVB/N mice exposed to the gelatinase inhibitor SB-3CT (n = 5) or vehicle control (n = 5). Note that the drug-treated mice show increased luciferase activity.
mammary glands. Lung metastasis was significantly attenuated in MMP9-null but not MMP7-deficient animals. MMP9 was expressed in inflammatory cells, primarily neutrophils, in tumor-bearing lungs. Experimental metastasis assays allowed determination of a time frame most relevant for the MMP9-mediated effect, which was in the later outgrowth stages of lung foci. In agreement with this observation, lung tumors from MMP9-deficient mice showed decreased angiogenesis. Surprisingly, the role of MMP9 seemed to be dependent on strain. In our studies, only mice that had significant genetic background derived from C57BL/6 showed reduced metastasis, whereas mice fully of the FVB/N background did not. These strain-specific responses were also observed in a study using a pharmacologic inhibitor with high selectivity for MMP9 and thus suggest that tumor responses to MMP inhibition are controlled by genetic differences.

The function of several proteases from multiple enzyme families has now been investigated in the MMTV-PyVT model. This was a model identified by the Protease Consortium, a group of investigators with expertise in different protease families, as a valid setting for assessing differential contributions of proteases to multistage tumor development (32). As with MMP9, two other proteases, urokinase-type plasminogen activator and plasminogen, were found to contribute to the development of lung metastases but not to mammary tumors (28, 29). In contrast, the cysteine protease cathepsin B, which is expressed by tumor cells and macrophages, contributed both to growth and progression of mammary tumors as well as to the development of lung metastases (30). A different pattern was seen with MMP14 (also known as MT1-MMP). In MMP14-null mammary glands, there was an increase in primary tumor growth rate, but this was followed by a reduction in lung metastasis (31). The data suggested that MMP14 facilitated tumor dissemination by collagen cleavage in the peritumoral environment. There are multiple ways in which MMP9 could affect metastasis. MMP9 has been identified as a critical component for priming of the "premetastatic niche," whereby soluble signals from a primary tumor result in selective preparation of certain organ sites to facilitate survival and growth of metastatic lesions in those organs (33, 34). Interestingly, we saw comparable effects irrespective of whether analyzing spontaneous metastasis or experimental metastasis, a result different to that reported by Hiratsuka and colleagues (33), who reported effects of MMP9 ablation on metastasis only when a primary tumor was present. Moreover, the imaging analysis suggested that the MMP9-mediated effect was more important in later stages of tumor outgrowth rather than initial survival of metastasizing cells. This interpretation is further suggested by the overall smaller size of the metastatic foci in MMP9-/- mice and the reduced vascular density. It should be remembered, however, that we could only assess the temporal effect of MMP9 deletion in the experimental metastasis setting, where development of a premetastatic niche is not an issue. In the spontaneously metastasizing tumors of the MMTV-PyVT mice, it is possible that MMP9 contributes both to angiogenesis, as our data indicate, and to priming of a metastatic niche.

As has been reported in other settings (19, 26), the primary source of MMP9 in these studies was cells of the myeloid lineage, particularly neutrophils. A previous analysis of MMTV-PyVT mice carrying a lacZ reporter driven by a region of the MMP9 promoter suggested that mammary tumor cells express MMP9 at a time point corresponding to increased invasive activity (18). We never saw any MMP9 expression by tumor cells, which may explain the lack of effect of MMP9 deficiency in the mammary glands. One potential reason for the disparate expression patterns is that the MMP9 promoter used in the lacZ analysis did not recapitulate the full in vivo promoter, including possible distant enhancer elements, so that its expression pattern was not completely accurate.

The most surprising finding in our study was the influence of strain on the effect of MMP9 ablation. There are many reports of strain-related polymorphisms differentially affecting phenotypes (35), including cancer (36), in mouse models. Indeed, analysis of the phenotype of mice carrying the MMTV-PyVT transgene in different genetic backgrounds indicates a strong effect of strain on tumor aggressiveness in this model (37). In particular, introduction of C57BL/6 increases tumor latency and extends the timing of metastasis to 120 days. The Hunter laboratory has invested a major effort in discovering potential host determinants of metastasis and has identified Sipa1 and Rep1b as two genes, polymorphisms of which can affect susceptibility both in mice and humans (38–40). Adding our results to their data further expands the pool of strain-specific metastasis modifiers, although it is not clear if Mmp9 is itself the gene that is polymorphic. Indeed, analysis of strain-dependent modifiers of MMTV-PyVT metastasis indicated that chromosomes 6, 9, 13, 17, and 19 contained loci related to metastasis susceptibility (41), not chromosome 2, where Mmp9 is located in the mouse.

Why MMP9 shows this strain-dependent effect is unclear. The possibilities are that the enzyme itself, its relevant substrate in the lung environment, or a modifier of its function is differentially regulated according to strain. When we examined neutrophil presence in the lungs of tumor-bearing mice, we detected no difference between the FVB/N and C57BL/6 backgrounds, indicating that the primary source of MMP9 is not dissimilar. Although we have identified the process of angiogenesis as the mechanism for the difference seen between MMP9 WT and MMP9-null mice of the C57BL/6 strain, we have not determined the substrate responsible. It has been suggested that release of vascular endothelial growth factor (VEGF) from matrix sequestration is one mechanism by which MMP9 promotes angiogenesis (24). In a pilot study with the VEGF/VEGF receptor 1 complex-detecting antibody (42) used in the Bergers study, we saw reduced complex formation in MMTV-PyVT;MMP9+/− lung tumors compared with controls (data not shown), suggesting that this is a possible explanation for the angiogenesis differences observed. Other roles for MMP9 in the angiogenic process include processing or liberation of other angiogenic growth factors (43), degradation of basement membrane proteins to facilitate endothelial cell migration and tube formation (43), and recruitment of pericytes to stabilize newly formed vasculature (25).

In all our experiments in which FVB/N mice were used, deficiency of MMP9 or treatment with the gelatinase inhibitor SB-3CT seemed to be associated with enhanced tumor development. In the case of the MMP9−/− mice, this effect did not reach statistical significance, although a clear trend was evident (Fig. 5). Following treatment with the inhibitor SB-3CT, a significant enhancement of luciferase signal, which corresponds to tumor burden, was seen. There have been reports previously of MMP9 ablation associated with enhanced tumor development. Coussens and colleagues (44) reported that MMP9-null mice developed fewer but more aggressive tumors in the K14-HPV16 skin cancer model. Interestingly, these mice were also on the
In conclusion, we have identified a metastasis-specific role for MMP9 in a transgenic mouse model of multistage mammary tumorigenesis that has been regarded as a credible model of human disease. The function of MMP9 seems to be in promotion of angiogenesis at the metastatic site; however, this function is dependent on genetic background. MMP9 was a primary target of drug were dying of their disease faster than were placebo-treated patients. In agreement with this idea, one MMP inhibitor trial in seeming progression, whereas others show reduced metastatic growth. In further support of this, conclusions are in line with opposing results from the drug studies reported here suggest that opposing results of MMP inhibition can be achieved (i.e., more or fewer metastases from the drug). This might indicate that future clinical use of MMP9 inhibitors may depend on the growth of tumor cells in the lung microenvironment. No potential conflicts of interest were disclosed.

Acknowledgments

Received 2/12/2008; revised 4/8/2008; accepted 5/6/2008.

Support: NIH grants R01CA848360 (L.M., Matrisian) and R01CA122417 (M. Chang and S. Mombashery) and a subcontract (B. Fingleton) of the Breast Cancer Center of Excellence grant DAMD-17-02-1-0993 (B. Shoane, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marke...
Strain Affects Matrix Metalloproteinase-9 Ablation

Effect of Ablation or Inhibition of Stromal Matrix Metalloproteinase-9 on Lung Metastasis in a Breast Cancer Model Is Dependent on Genetic Background

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/68/15/6251

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2008/07/29/68.15.6251.DC1

Cited articles
This article cites 46 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/68/15/6251.full#ref-list-1

Citing articles
This article has been cited by 19 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/68/15/6251.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Permissions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/68/15/6251.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.