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roteins are evolutionarily conserved transcription factors required for the expression of a wide variety
es that are critical for development and cell cycle progression. Deregulated expression of certain Sp
ns is associated with the formation of a variety of human tumors; however, direct evidence that
ven Sp protein is oncogenic has been lacking. Here, we report that Sp2 protein abundance in mice
ses in concert with the progression of carcinogen-induced murine squamous cell carcinomas. Trans-
mice specifically overexpressing murine Sp2 in epidermal basal keratinocytes were highly susceptible
und- and carcinogen-induced papillomagenesis. Transgenic animals that were homozygous rather
emizygous for the Sp2 transgene exhibited a striking arrest in the epidermal differentiation program,
than h

perishing within 2 weeks of birth. Our results directly support the likelihood that Sp2 overexpression occurring
in various human cancers has significant functional effect. Cancer Res; 70(21); 8507–16. ©2010 AACR.
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Sp family of mammalian transcription factors includes
embers, Sp1 to Sp9, that share a highly conserved DNA-
g domain (see refs. 1–4 for review). The promoters
ny mammalian genes, including genes controlling cell
rogression and development, are regulated by Sp pro-
5, 6). In turn, the activities of Sp proteins are regulated
riety of growth-related signal transduction pathways as
s mechanisms controlling embryonic development (4).
ls lacking specific Sp proteins exhibit global or tissue-
ic defects, suggesting that Sp family members play
ial, nonoverlapping roles in development (3, 4). The
pression of a subset of Sp family members has also
ssociated with the formation of a variety of human can-
, 7). Yet, it remains uncertain whether the deregulated
sion of any given Sp protein is oncogenic.
ny biochemical and functional properties of
bers have been established, studies focusing
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2 have yielded few insights into its roles in cell and
ismal physiology. The Sp2 DNA-binding domain is the
onserved (75%) among Sp family members and binds
igh affinity (Kd = 225 pmol/L) to a consensus DNA-
g site (5′-GGGCGGGAC-3′) that is distinct from that
(8–10). Yet, in transient transfection assays, Sp2 only
y transactivates promoters carrying consensus Sp2-
g sites or well-characterized Sp-dependent promoters
re readily induced by Sp1 and Sp3 (8, 11). Despite its
read expression, little or no soluble Sp2 DNA-binding
y has been detected in many human and mouse cell
8). Studies using Sp1/Sp2 chimeras have revealed that
2 transactivation and DNA-binding domains are each
vely regulated in vitro, and further analyses have shown
ach of these domains carries amino acid sequences
ndependently target Sp2 to the nuclear matrix (12).
t analyses have shown that Sp2 (a) transcripts are
ted maternally, (b) is expressed in embryonic and adult
s, (c) is essential for the completion of gastrulation,
) transcription is governed by multiple promoters in
and tissue-specific fashion (11, 13, 14). Deregulation
expression has also been associated with tumori-

is. Sp2 abundance is increased in human prostate
rs and correlated directly with pathologic grade (15).
ein, we report that Sp2 protein abundance is correlated
ly with the progression of murine squamous cell carci-
s induced by 7,12-dimethylbenz(a)anthracene (DMBA)/
etradecanoylphorbol-13-acetate (TPA). To determine
er Sp2 overexpression is oncogenic or only associated
umorigenesis, we created a novel mouse model in
Sp2 is overexpressed in cells of the epidermal basal

ia by the bovine keratin 5 promoter. Sp2 overexpres-
n transgenic hemizygotes induces alopecia, marked
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tibility to wound-induced neoplasia, and increased
vity to carcinogen-induced skin tumorigenesis. Levels
expression encountered in homozygotes result in
tal lethality and a striking depletion of terminally dif-
iated keratinocytes. These results indicate that Sp2
pression in this epidermal compartment inhibits kera-
te differentiation and sensitizes these cells to wound-
rcinogen-induced neoplastic growth.

rials and Methods

and cell culture
-1 cells were obtained from the American Type Cul-
ollection and cultured in DMEM (Life Technologies,
upplemented with 10% heat-inactivated fetal bovine
(Atlanta Biologicals) and 1% Pipracil at 37°C under

2.

als and generation of transgenic mouse strains
/NJ and K15-EGFP [B6.Cg-Tg(Krt1-15-EGFP)2Cot/J]
ls were obtained from The Jackson Laboratory and
ained under standard conditions. A transgene construct
g the bovine keratin 5 promoter and an epitope-tagged
e Sp2 cDNA was prepared in plasmid pTG1 (a gift
he University of North Carolina Animal Models Core
y). The bovine keratin 5 promoter was amplified from
id 383 (a kind gift from Dr. Angel Ramirez, Department
thelial Biology, CIEMAT, Madrid, Spain) via the PCR
Titanium Taq DNA polymerase (Clontech, Inc.) and
pecific primers (5′-ggggcggccgcgatcaaatgcctggtgcaca-3′
′-ggggtcgacccgaggtgctggagagaaag-3′). This promoter
bcloned upstream of a splice donor sequence derived
the first exon of the mouse albumin gene. A full-
, epitope-tagged [Influenza hemagglutinin (HA)]
Sp2 cDNA was isolated via reverse transcription-

RT-PCR) using total mouse heart RNA as a template
orted elsewhere (13). The nucleotide sequence of this
has been deposited in GenBank (accession number
673). An HA-epitope tag was appended at the 3′
f mouse Sp2-coding sequences via the PCR using
um Taq DNA polymerase (Clontech) and gene-specific
rs (5′-gaattcagatccgccaccatgagcgcagatccacagatga-3′
′-cccacctaggcacgaagggcttgtacccatacgatgttccagattacgc-
aaagcttg-3′). This tagged cDNA was subcloned down-
of a splice acceptor sequence derived from exon 2 of

ouse albumin gene, creating pTG1-K5-mSp2HA. The
ity of this transgene construct was confirmed by
ated DNA sequencing. The transgene was linearized,
ronuclear injections (FVB/NJ) and implantations were
med by staff of the University of North Carolina
l Models Core Facility. Transgene-carrying animals
dentified via the PCR using transgene-specific primers
gcaaggcaagtttatccctagctgagc-3′ and 5′-agggagatggct-
cc-3′), and two male founders (designated A and C)
dentified via crosses with FVB/NJ females and geno-
of progeny. All animal experiments were conducted

he approval of the Institutional Animal Care and Use
ittee of North Carolina State University.

were
Inc., r

r Res; 70(21) November 1, 2010
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ng of transgene integration sites and
e genotyping
nsgene integration sites were isolated using a proce-
described previously (16), subjected to automated
sequencing, and compared with the mouse genome
nce. Allele-specific primers were developed that facili-
he identification of wild-type (WT), hemizygous, and
zygous animals among progeny within each transgenic
(termed Sp2-A and Sp2-C). For Sp2-A progeny, the pri-
are 5′-cgtgtgcaccaggcatttgatc-3′, 5′-gggtgactgaggca-
g-3′, and 5′-caagcagttctgagacctgcac-3′. For Sp2-C
ny, the primers are 5′-acattgcagcacattgcacactatcc-3′,
taagcactaacatcatcaggcg-3′, and 5′-gttagctgataacctttt-
ccg-3′. Animals carrying the K15-EGFP transgene were
fied with gene-specific primers (5′-aagttcatctgcac-
3′ and 5′-tccttgaagaagatggtgcg-3′).

R and quantitative RT-PCR
al RNAs were prepared from neonatal and adult ani-
using Trizol reagent (Invitrogen Corp.), first-strand
s were synthesized using oligo(dT) (Invitrogen) primers
uperScript III reverse transcriptase (Invitrogen), and
pecific primers (5′-ccagcctaccccaaggaaac-3′ and 5′-
ccctgaatctgaagtat-3′) were used to amplify Sp2 mes-
Sp2 expression was quantitated using an iQ5 iCycler
ad Laboratories, Inc.) and QuantiTect SYBR Green
n, Inc.). The Ct value for Sp2 expression in each sample
ormalized by subtracting the Ct value for amplification
ceraldehyde-3-phosphate dehydrogenase (GAPDH; 5′-
gaaccacgagaaat-3′ and 5′-ccttccacaatgccaaagtt-3′).

fection and Western blotting
-1 cells were transfected with expression constructs
SuperFect reagent (Qiagen). The construction and
rties of an epitope-tagged human Sp2 expression con-
(pCMV4-hSp2/flu) have been described (8, 11, 12, 17).
rn blots were performed as described (8) using anti-HA
nti-actin (Santa Cruz Biotechnology, Inc.) or anti-Sp2
a-Aldrich, Inc.) antibodies, and antigen-antibody com-
were detected using an enhanced chemiluminescent
L; GE Healthcare Amersham).

ration of tissue sections and
nohistochemical staining
ole neonates or dorsal skin samples were fixed in 10%
lin and embedded in paraffin, and 10-μm sections
placed on glass slides. Sections were deparaffinized
hydrated by consecutive incubations in xylene, 100%
ol, and 95% ethanol and subjected to staining with
or immunohistochemistry as described (18–20). Anti-
against keratins 5, 6, 10, 14, and 15 and loricrin were
ed from Covance Research Products, Inc. A mono-
l anti–keratin 8 antibody has been described (21).
and bromodeoxyuridine (BrdUrd) antibodies were ob-
from BD Biosciences, Inc. Antibodies against EGFP

roliferating cell nuclear antigen (PCNA; clone PC10)

obtained from Santa Cruz Biotechnology and Dako,
espectively.
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ding assay
e were anesthetized via isoflurane inhalation, dorsal
es were sterilized, and full-thickness wounds (4 mm
meter) were introduced using a dermal biopsy punch
x, Inc.). Wounded animals were checked daily for heal-
d papilloma development.

ment of animals with DMBA/TPA
sal surfaces of WT and transgenic littermates were
d, and animals were replaced into their cages for
rs. Shaved surfaces were treated topically with a single
(200 nmol) of DMBA in acetone. Two weeks later,
-treated animals were treated topically twice per week
PA (6.8 nmol in acetone) for 20 weeks. Animals were
d daily for papilloma development.

tical analysis
statistical significance of results was determined using
udent's t test. Differences with P values of <0.05 are
ered significant.

lts and Discussion

rotein expression increases in concert with
/TPA-induced skin carcinogenesis
ause Sp2 expression is correlated directly with the
ssion of human prostate cancers (15), it became of
st to determine if this correlation might extend to
onal neoplasms at one or more stages of tumor pro-
on. We chose carcinogen-induced mouse squamous
rcinomas as our model system for these studies. Pro-
tracts were prepared from normal whole skin and epi-
s; a series of small-, medium-, and large-sized DMBA/
nduced papillomas; a mouse cell line derived from a
/TPA-induced squamous cell carcinoma (MT2.6; ref.
d a spontaneously immortalized mouse keratinocyte
ne (BALB/MK2; ref. 22), and equivalent amounts of
xtract were examined by Western blotting. As shown
1A, Sp2 expression was below the limit of detection in
l mouse skin (lane 1), epidermis (lane 2), or small-sized
omas (lanes 3–5). Sp2 expression was barely detect-
medium-sized papillomas (lanes 6–8), was expressed

nificant levels in two of three large-sized papillomas
9–11), and was expressed strongly in BALB/MK2 and
cells (lanes 12 and 13, respectively). These results in-
that Sp2 expression is upregulated in this model sys-
s correlated directly with the progression of DMBA/
nduced neoplasms, and is a feature of immortalized
/MK2) keratinocytes. In contrast, Sp1 expression
ot correlated with progression in this model system
A). Sp2 expression is also elevated in human squamous
oma cell lines relative to primary human keratinocytes
B).

ation of transgenic mice in which Sp2 is
ssed ectopically in basal keratinocytes

determine if Sp2 expression drives tumor progression
only associated with it, we generated a transgene

stratu
and h

acrjournals.org
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-K5-mSp2HA) in which expression of an epitope-
(Influenza HA) mouse Sp2 cDNA (13) is regulated by
vine keratin 5 promoter. This promoter has been used
ively to express genes of interest in basal keratinocytes,
ll of origin for DMBA/TPA-induced tumors (23–27).
nfirm the integrity of this construct, COS-1 cells were
ently transfected with pTG1-K5-mSp2HA or an expres-
lasmid (pCMV4-hSp2/flu) carrying an epitope-tagged
n Sp2 cDNA that has been characterized (8, 11,
). As shown in Fig. 1C, proteins of the expected size
a) were detected with an anti-HA antibody in extracts
red from transfected cells (lanes 2 and 3) but not in an
t prepared from control cells (lane 1).
transgene carried by pTG1-K5-mSp2HA was injected
VB/NJ pronuclei, and two male founders (denoted A
) were identified. One half of the progeny derived from
ounder inherited the transgene, indicating that integra-
ccurred within a single chromosome. We used a PCR-
strategy (16) to clone transgene integration sites and
ped PCR-based assays that identify hemizygous and
zygous descendents (Fig. 1D; data not shown). The in-
ion sites for founders A and C were mapped to mouse
osomes 6 and 5, respectively. The Sp2-A integration
ccurred in an intergenic region 40 kbp upstream of
Olr1 (oxidized low-density lipoprotein receptor 1),

as the Sp2-C integration site occurred within intron
the latrophilin 3 (Lphn3/CIRL3) locus. Lphn3/CIRL3
es a brain-specific G protein–coupled receptor that
ressed most abundantly immediately after birth (28).
ot known if Lphn3/CIRL3 is an essential gene, nor is
ysiologic significance understood.

verexpression in basal keratinocytes causes
cia in hemizygotes and postnatal lethality
mozygotes
-A and Sp2-C hemizygotes have been bred with FVB/NJ
ls for more than 11 generations and exhibit normal life
ancy and fecundity. Most Sp2-A hemizygotes develop
ia and hyperkeratosis beginning at 2 months of age
A). These skin abnormalities can occur at discrete sites
ites of abrasion or repetitive movement) or extend
hout the dorsal surface, and affected regions increase
erity with age. Sp2-C hemizygotes do not exhibit alope-
other gross phenotypic abnormalities. Homozygous
or Sp2-C transgenic pups are produced at expected
, and the gross appearance of these animals at birth
istinguishable from WT and hemizygous littermates.
ver, homozygotes perish within the first 2 weeks of post-
ife. The skin of Sp2-A homozygotes begins to deteriorate
tnatal day 3 (PD3), becoming increasingly reddened and
eratotic (Fig. 2B, asterisks). Such pups become runted
evelopmentally retarded relative to their littermates
ccumb before PD13. The skin of Sp2-C homozygotes
orates more quickly, and pups perish before PD3.
tologic examinations of PD1 Sp2-A homozygous pups
ed a well-structured stratified epidermis with an intact

m corneum, as well as developing sebaceous glands
air follicles similar to WT animals. Multifocal apoptosis
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the epidermal basal layer was marginally elevated
e to WT littermates with scattered disorganization of
cells that became significantly more pronounced by
loss of normal epidermal architecture was noted by

ith a disorganization of cells in all layers and occasion-
s of partial to complete epidermal collapse where the
m spinosum contacted the dermis. Loss of laminar epi-
l architecture was accompanied by scattered apopto-
pertrophy, and hydropic swelling of keratinocytes, as
s orthokeratotic laminated hyperkeratosis and patchy
of parakeratosis. The severity and extent of these afore-
oned features worsened progressively through PD13.
ogic examinations of Sp2-C pups revealed identical epi-
l defects.
assess levels of Sp2 expression in transgenic animals,
periments were performed. First, RNAs were harvested
hole skin of WT, hemizygous, and homozygous post-

pups and Sp2 expression was detected via RT-PCR. As
in Fig. 2C, robust levels of Sp2 message were detected

litter with allele-specific primers. Amplification reactions produce products
emizygous; Ho, homozygous.
izygous and homozygous Sp2-A (left) and Sp2-C (right)
ls relative to WT littermates. Second, levels of Sp2

basal
the ha

r Res; 70(21) November 1, 2010
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sion were quantified by real-time PCR as a function of
l age. Real-time PCR assays performed with RNAs from
skin of 3-month-old hemizygotes indicated that Sp2
sion was ∼20-fold above endogenous levels in Sp2-A
ls and elevated by 200-fold in Sp2-C animals (data not
). Levels of exogenous Sp2 expression in Sp2-C hemizy-
increased with age, whereas transgene expression levels
-A hemizygotes remained unchanged (data not shown).
etermine if proteins of expected sizes were synthesized
sgenic animals, denatured extracts were prepared from
skin and Western blots were performed using an anti-
tibody. Consistent with results obtained in transfection
ments (Fig. 1C), a single protein of 80 kDa was detected
not shown). To determine if the bovine keratin 5 pro-
directed expression of Sp2 to basal keratinocytes,

in-embedded sections were prepared from whole skin
ted from WT and homozygous Sp2-A littermates and
nous Sp2 expression was detected via immunohisto-
stry using an anti-HA antibody. As shown in Fig. 2D,

and 290 bp from WT and transgenic alleles, respectively.
1. Sp2 protein expression is correlated with skin tumor progression and creation of transgenic mouse strains. A, Western blots of proteins
from normal skin, DMBA/TPA-induced skin papillomas, and keratinocyte cell lines examined with polyclonal antibodies against Sp1 (αSp1) and
p2). Lane 1, normal whole skin; lane 2, normal epidermis; lanes 3 to 5, small-sized papillomas; lanes 6 to 8, medium-sized papillomas; lanes 9 to 11,
ized papillomas; lane 12, BALB/MK2; lane 13, MT2.6. B, Western blot of human samples with polyclonal antibodies against Sp2 (αSp2) and
Actin). Lane 1, primary human keratinocytes; lane 2, SCC13; lane 3, SCC23; lane 4, SQCCY1; lane 5, A431. C, Western blot of extracts from control
nsfected COS-1 cells examined with polyclonal antibodies against HA (αHA) and actin (αActin). Lane 1, control extracts; lane 2, extracts prepared
lls transfected with pTG1-K5-mSp2HA; lane 3, extracts prepared from cells transfected with pCMV4-hSp2/flu. D, PCR-mediated genotyping of
cells within the interfollicular epidermis as well as
ir follicle outer root sheath stained strongly with an
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A antibody, whereas sections prepared from WT
ls lacked staining. We conclude that the Sp2 transgene
ressed as anticipated, and Sp2 overexpression in basal
nocytes results in alopecia in Sp2-A hemizygotes and
tal lethality in Sp2-A and Sp2-C homozygotes.

verexpression causes arrested differentiation
interfollicular epidermis
determine the consequence of Sp2 overexpression for marke

d with an anti-HA antibody. HA-positive basal keratinocytes are indicated by a fill
rmis is indicated by a dotted red line.

acrjournals.org
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ere prepared from Sp2-A homozygotes and WT litter-
on successive postnatal days. Pups were injected with
d 1 hour before euthanasia to label proliferating cells,
kin sections were examined with anti-BrdUrd anti-
as well as antibodies against differentiation-specific
rs. As shown in Fig. 3A, sections stained with H&E
ed that the epidermis of WT and homozygotes is sim-
cell stratification and thickness on PD2 but diverges

dly on subsequent postnatal days. The epidermis of
mal differentiation, paraffin-embedded whole skin sec- homozygotes thickened increasingly on PD3 to PD4 relative

2. Gross phenotypes of hemizygous and homozygous Sp2-A animals and ectopic expression of mouse Sp2 in basal keratinocytes. A, alopecia in
emizygotes. Representative affected animals are illustrated at 2 to 4 mo of age. B, F2 litter of WT, hemizygous, and homozygous animals on
omozygous animals are indicated with an asterisk. C, amplification of endogenous and exogenous Sp2 mRNAs in WT and transgenic animals

PCR. Total RNAs were prepared from dorsal whole skin from WT, hemizygous, and homozygous littermates on PD1 and analyzed by RT-PCR
2- or GAPDH-specific primers. Left, Sp2-A; right, Sp2-C. D, immunohistochemical detection of ectopic mouse Sp2 expression in basal keratinocytes
homozygotes. Paraffin-embedded dorsal skin sections prepared from WT (left) and homozygous transgenic (right) littermates on PD6 were
ed arrowhead. The basement membrane separating the epidermis

Cancer Res; 70(21) November 1, 2010 8511
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littermates, with hypertrophic and hydropically
n cells accumulating in disorganized epidermal
. To determine whether markers of basal (keratins 5
4) and suprabasal (keratin 10) keratinocytes were
sed on these postnatal days, paraffin-embedded sec-
were analyzed by immunohistochemistry. Keratins 5,
d 14 were expressed as expected in WT animals
A, top), whereas the expression of these markers was
profoundly in homozygotes (Fig. 3A, bottom). Basal

nocytes of homozygotes expressed keratin 5 on PD2
poradic keratin 5–stained cells noted in suprabasal
The abundance of keratin 5–positive cells in all epi-
l cell layers increased significantly on PD3 to PD4.
rly, keratin 14 expression was detected in basal kerati-

, n ≥ 7,300 cells/group); bars, SE.
s on PD2 and in all epidermal layers on subsequent
Keratin 10 expression was detected in all suprabasal

To
ment

r Res; 70(21) November 1, 2010
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on PD2, and diminished to low levels or was absent
granular and cornified layers during subsequent post-
days.
extend this analysis, paraffin-embedded sections on
ere examined for the expression of a bevy of additional
rs (Fig. 3B). The expression of keratin 6, a marker
ated with neoplastic, inflamed, and/or wounded epi-
s, was detected in the epidermis of homozygotes but
T animals (29, 30). Keratin 8, an alternative heterodi-
partner of keratin 14 and a keratin normally restricted
ple” epithelia, was detected in the epidermis of homo-
s and absent in WT animals (31–34). Finally, a marker
cteristic of the stratum corneum, loricrin, was not
ed in homozygotes.
3. Histochemical and immunohistochemical characterization of postnatal Sp2-A homozygotes. A, paraffin-embedded dorsal skin sections from WT
d homozygous transgenic (bottom) littermates on PD2 to PD4. Sections were stained with H&E or with antibodies against keratin 5 (K5), 10 (K10),
14). Dashed red lines indicate the position of the epidermal basement membrane. B, paraffin-embedded dorsal skin sections from K15-EGFP
nic animals (left) and [K15-EGFP, Sp2-A/Sp2-A] double-transgenic (right) littermates on PD4. Sections were stained with antibodies against keratin 6
8 (K8), loricrin (Lor), CD34, EGFP, or BrdUrd. A filled arrowhead indicates a BrdUrd-positive suprabasal keratinocyte, and dashed red lines
the position of the epidermal basement membrane. C, enumeration of BrdUrd-positive basal keratinocytes within the interfollicular epidermis
determine if epidermal distress induced the recruit-
of stem cells from the hair follicle “bulge” region to
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terfollicular epidermis, two experiments were per-
d. First, PD4 sections were stained for the expression
34, a well-characterized marker of this stem cell popu-
(35, 36). Second, a lineage tracing experiment was per-
d in which Sp2-A mice were intercrossed with animals
xpress a transgene, K15-EGFP, restricted to bulge-
d stem cells (37, 38). CD34- and EGFP-positive cells
detected within the basal and suprabasal layers of
homozygotes, but not WT littermates, on PD4, indi-
the recruitment of bulge-derived cells to the interfol-
epidermis (Fig. 3B).
lly, sections were stained with an anti-BrdUrd anti-
o identify proliferating cells. BrdUrd-positive cells were
ed in the basal layers of both WT and homozygous
ls; however, BrdUrd-positive cells were also noted in

asal layers of homozygotes (Fig. 3B, arrowhead). To quant

a margin (left column) and papilloma (right column) were stained with H&E or va
eption of the addition of antibodies against PCNA and keratin 15 (K15).

acrjournals.org
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terfollicular epidermis of WT and homozygous post-
animals were enumerated and compared. As shown
. 3C, BrdUrd-positive basal cells were more numerous
ozygotes; however, this level of increased cell prolifer-
as not statistically significant (P < 0.1). Taken together,

nclude from these immunohistochemical analyses that
erexpression in basal keratinocytes produces a popula-
f phenotypically immature keratinocytes that seem
to commit to the epidermal differentiation program.

verexpression renders hemizygous animals
ptible to wound-induced neoplasia
he course of these studies, we noted that Sp2-C hemi-
es developed occasional papillomas at sites of ear
es or minor wounds sustained from littermates. To

ify this apparent susceptibility to wound-induced neo-
ify basal cell proliferation, BrdUrd-positive cells within plasia, full-thickness surgical wounds (4 mm in diameter)

4. Characterization of wound-induced papillomas in Sp2-C hemizygotes. A, papilloma development on the dorsal surface of a surgically wounded
hemizygote. The number of days following wounding is indicated below each image. B, low-magnification image of wound-induced papilloma.
chemical and immunohistochemical characterization of a wound-induced papilloma. Paraffin-embedded dorsal skin tissue sections from the
rious antibodies. Antibodies used are indicated as in Fig. 3, with
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ntroduced into the dorsal skin of Sp2-C hemizygotes
T littermates and these animals were monitored for
velopment of papillomas. As shown in Fig. 4A, sur-
duced papillomas developed within weeks following
ing of Sp2-C hemizygotes. Whereas surgical wounding
animals did not induce the formation of a single pap-
, 27% of wounds sustained by Sp2-C hemizygotes
d papillomagenesis (P = 0.001; Fig. 5A). To determine
incidence of wound-induced papillomagenesis is influ-
by animal age, results presented in Fig. 5A were plot-
a function of the age of Sp2-C animals at the time of

y. Whereas young animals (1–4 months of age) were
ildly susceptible to wound-induced papillomas, 70%

strom
plasm

–4 mo, n = 9 mice/group; 6–10 mo, n = 17 mice/group; 12–20 mo, n = 22 mice/gro
mal (WT, n = 8 mice/group; Sp2-C, n = 14 mice/group) are plotted as a function

r Res; 70(21) November 1, 2010

Research. 
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mals developed papillomas when wounded at 6 to 10
s of age, and this increased incidence of papillomagen-
statistically significant (P < 0.01; Fig. 5B). We conclude
these results that Sp2 overexpression in basal kerati-
s induces a marked susceptibility to wound-induced
sms. Moreover, this susceptibility to papillomagenesis
ses in concert with the age-dependent increase in Sp2
sion noted in these animals.
tologic examinations of wound-induced lesions re-
them to be pedunculated to sessile cutaneous papillo-
omposed of epidermal hyperplasia and fibrovascular

a that often contained mixed neutrophilic and lympho-
acytic inflammation (Fig. 4B). Multifocal areas of mild
5. Incidence of wound- and DMBA/TPA-induced papillomas in WT and Sp2-C hemizygotes. A, percentage of surgical wounds that produced
as in WT and Sp2-C hemizygous littermates in animals between 1 and 20 mo of age. Columns, mean (WT, n = 11 mice/group; Sp2-C, n = 48 mice/
bars, SE. B, percentage of Sp2-C hemizygotes that developed wound-induced papillomas as a function of age at time of surgery. Columns,
up); bars, SE. C, mean number of DMBA/TPA-induced papillomas
of age at time of DMBA treatment. Bars, SE.
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mal dysplasia were accompanied by mild to moderate
ocyte apoptosis in the basal and immediate suprabasal
where lymphocyte satellitosis was occasionally noted.
ections prepared from wound-induced papillomas were
ned by immunohistochemistry for markers of cell pro-
ion (PCNA) and keratinocyte differentiation (keratins 5,
, 14, and 15 and loricrin). Consistent with expectations,
minority of basal cells within the epidermis at the mar-
f wound-induced papillomas stained with PCNA antibo-
ig. 4C, left column). In stark contrast, PCNA-positive
ere detected throughout wound-induced papillomas
al as well as suprabasal cell layers (Fig. 4C, right
n). Differentiation markers (keratins 5, 14, and 15)
sed within cells of the basal cell layer in margin tissue
etected largely in suprabasal layers of wound-induced
mas (Fig. 4C). Keratin 10 was detected in all supraba-
ers in margin tissue, yet was detected weakly in the
superficial suprabasal layers of papillomas (Fig. 4C).
tent with results noted earlier for postnatal transgenic
zygotes, keratins 6 and 8 were detected throughout
pidermis of wound-induced neoplasms (Fig. 4C).
, diffuse loricrin expression was detected in papillo-
ithin an expanded suprabasal zone relative to its re-
d expression within the cornified layer of margin
(Fig. 4C). We conclude from immunohistochemical
s that wound-induced neoplasms are composed of
proliferative, phenotypically immature keratinocytes
xhibit a profound disruption of the epidermal differ-
ion program.

verexpression increases the sensitivity of
ygous animals to skin carcinogenesis
determine if Sp2 overexpression increases the sensiti-
basal keratinocytes to transformation by an environ-
l carcinogen, papillomagenesis in Sp2-C hemizygotes
ntrol animals was analyzed using a “two-stage” model
n carcinogenesis. WT and hemizygous Sp2-C litter-
were treated with a single application of DMBA fol-
by twice weekly treatments with TPA for 20 weeks.
hemizygotes and WT littermates developed papillo-
.5 and 7.5 weeks following DMBA treatment, respec-
(data not shown), and DMBA/TPA-treated Sp2-C
ygotes exhibited greater numbers of papillomas per an-
hroughout the course of this study (Fig. 5C). Treated
ls were sacrificed before the progression of papillomas
amous cell carcinomas, and thus, it was not possible to
xpression affects the inci- Rece

tors: bring in the family. Genomics 2005;85:551–6.
ao C, Meng A. Sp1-like transcription factors are regulators of embr-
ic development in vertebrates. Dev Growth Differ 2005;47:201–11.
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tra

6. Sa
ca

7. Bla
fam
J C

8. Mo
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p2 overexpression in basal keratinocytes increases their
ivity to an environmental carcinogen.
s study establishes that Sp2 overexpression inhibits the
ntiation of epidermal keratinocytes, rendering these
usceptible to oncogenesis. Indeed, the striking inci-
of wound-induced papillomagenesis in Sp2-C hemizy-
indicates that Sp2 overexpression is sufficient, in the
priate physiologic milieu, to subvert mechanisms con-
g basal cell proliferation and differentiation. Similar
tibilities to wound-induced neoplasia have been re-
in transgenic animals expressing potent oncogenes
a-ras or v-jun) in this same epidermal compartment
). It will be of interest to determine whether wound-
d neoplasms in Sp2-C hemizygotes are dependent on
matory growth factors and cytokines released follow-
ounding, as has been noted in other systems (42–45).
se stem cells supporting the interfollicular epidermis
cated within the basal layer, our results suggest that
ay regulate the commitment of progenitors in this,
erhaps additional, stem cell compartments. In keeping
his speculation, Sp2 overexpression is associated with
ogression of human prostatic carcinoma and thus Sp2
egulate the proliferation/differentiation of progenitor
tissues beyond the epidermis (14). To our knowledge,
udy provides the first direct evidence that Sp family
ers can function as oncogenes, and suggests that ther-
c strategies targeting Sp2 may prove efficacious.
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