Phosphatase PRL-3 Is a Direct Regulatory Target of TGFβ in Colon Cancer Metastasis

Yanjun Jiang1, Xiao-Qiong Liu1, Ashwani Rajput3, Liying Geng1, Melanie Ongchin4, Qi Zeng5, Gregory S. Taylor2, and Jing Wang1

Abstract

Metastasis causes most deaths from cancer yet mechanistic understanding and therapeutic options remain limited. Overexpression of the phosphatase PRL-3 (phosphatase of regenerating liver) is associated with metastasis of colon cancer. Here, we show that PRL-3 is a direct target of signaling by TGFβ, which is broadly implicated in progression and metastasis. We found that suppression of PRL-3 expression by TGFβ was mediated by Smad-dependent inhibition of PRL-3 transcription at the level of promoter activity. PRL-3 activation stimulated PI3K/AKT signaling that caused resistance to stress-induced apoptosis. PRL-3 overexpression promoted metastatic colonization in an orthotopic mouse model of colon cancer, whereas PRL-3 knockdown reduced metastatic potential. Altered metastatic phenotypes were not derivative of primary tumor development or local invasion but could be attributed to PRL-3-mediated cell survival. Our findings suggest that inhibiting PRL-3 expression might be an important mechanism through which TGFβ suppresses metastasis in colon cancer. In addition, our findings suggest that loss of TGFβ expression, which occurs commonly during colon cancer progression, is sufficient to activate a PRL-3-mediated cell survival pathway that can selectively promote metastasis. Therefore, a major implication of our findings is that PRL-3 antagonists may offer significant value for antimetastatic therapy in patients with colon cancer. Cancer Res; 71(1); 234–44. ©2010 AACR.

Introduction

TGFβ plays an important role in tumorigenesis and metastasis. Upon ligand binding, TGFβ type II receptor (RII) recruits and activates TGFβ type I receptor (RI), which then activates Smad2 and Smad3. Activated Smad2 and Smad3 form complexes with Smad4 and translocate to the nucleus, where they regulate gene expression (1). We and others have demonstrated that TGFβ suppresses tumor initiation in a variety of cancers, including colon cancer, and that loss of TGFβ signaling leads to malignancy (2–5). However, the role of TGFβ signaling in metastasis has been controversial. Although many studies have shown that TGFβ promotes metastasis (6), others have demonstrated that TGFβ suppresses metastasis (7, 8). Recently, studies of human tumor samples indicate that loss or reduction of TGFβ signaling in human colorectal tumors is associated with the development of metastasis (9, 10).

Our previous studies indicate that abrogation of TGFβ signaling enables increased survival under stress in colon cancer cells (11). In addition, we have shown that loss of TGFβ signaling is associated with increased metastasis, whereas enhanced TGFβ signaling suppresses metastasis in an orthotopic model of colon cancer (Simms et al., unpublished data). These results suggest that endogenous TGFβ increases stress-induced apoptosis to prevent metastatic progression. In contrast, abrogation of TGFβ signaling leads to activation of oncogenic signals that promote survival and protect tumor cells from stress-induced apoptosis, thereby increasing their metastatic potential. Identification of oncogenes that are suppressed by TGFβ signaling would shed light on mechanisms of TGFβ tumor suppressor function and provide new opportunities of molecular targeting for novel cancer treatment.

PRL-3 (phosphatase of regenerating liver), a metastasis-associated protein, belongs to the PRL family of protein tyrosine phosphatases, which includes 2 other members PRL-1 and PRL-2 (12). Whereas PRL-1 and PRL-2 are expressed in most tissues, PRL-3 expression is restricted to heart and skeletal muscle (13). Upregulation of PRL-3 expression correlates with colon cancer progression; undetectable in normal colon epithelial, intermediate levels in 25% to 45% advanced primary tumors and significantly elevated levels in...
greater than 90% metastases regardless of metastatic sites (14, 15). Importantly, PRL-3 expression in primary colorectal tumors has prognostic significance in predicting the development of liver and/or lung metastases as well as shortened patient survival (16–19). Therefore, PRL-3 shows promise as a biomarker for advanced malignancy and as a prognostic indicator for poor survival in colorectal cancer. Experimental manipulation of PRL-3 expression in several cell models alters cancer-associated phenotypes including proliferation, invasion, tumorigenesis, and metastasis (16, 20, 21). These studies indicate that upregulation of PRL-3 expression has a causative role in tumor progression rather than merely being a consequence of these processes, which raises the possibility of PRL-3 being a potential therapeutic target for colon cancer treatment. However, little is known of the regulation of PRL-3 expression. Increased gene copy number is partially responsible for upregulation of PRL-3 expression in colon cancer (14, 15). In this study, we demonstrate that expression of PRL-3 is suppressed by TGFβ signaling in colon cancer cells. Smad3, but not Smad2, is essential for this suppression. Therefore, loss of TGFβ signaling, which occurs in 30% to 50% of colon cancer (22, 23), is likely a mechanism of PRL-3 upregulation in colon cancer. In addition, our studies show that PRL-3 activates AKT and maintains AKT activation under growth factor deprivation stress (GFDS). Ectopic expression of PRL-3 increases cell survival under GFDS and promotes metastasis in vivo, whereas knockdown of PRL-3 expression sensitizes colon cancer cells to stress-induced apoptosis and reduces metastasis in an orthotopic model.

Materials and Methods

Cell culture and reagents

The human colon carcinoma FET, GEO, and CBS cell lines were described previously (24). They were maintained at 37°C in a humidified incubator with 5% CO2 and cultured in SM medium (McCoy’s 5A serum-free medium; Sigma) supplemented with 10 ng/mL of epidermal growth factor, 20 μg/mL of insulin, and 4 μg/mL of transferrin. When cells were under growth factor and nutrient deprivation stress, they were cultured in SM medium in the absence of growth factor or serum supplements.

A PRL-3–specific monoclonal antibody (clone 318; ref. 25) was used to detect endogenous PRL-3 protein. TGFβ-receptor type 1 kinase inhibitor SB525334, PI3K inhibitor LY294002, and recombinant human TGFβ1 were purchased from Sigma, Calbiochem, and R&D Systems, respectively. DNA fragmenta
tion ELISA kits were from Roche Applied Science.

Reporter plasmids and luciferase assays

A 2,033-bp fragment of human PRL-3 promoter (nucleotides 111,546 to 113,579 of Homo sapiens chromosome 8, GenBank AC100803) was amplified by PCR from a BAC clone (bacteria artificial chromosome; ID 3091L24, Invitrogen) and cloned into pGL 4.20 luciferase reporter plasmid (Promega) to generate PRL-3-F5. Site-directed mutagenesis was performed to introduce quadruple point mutations into Smad-binding element (SBE)-like binding sites (GTCTGCC to CATAGCCC) to generate PRL-3-F5-mutE1 and PRL-3-F5-mutE4, respectively. PRL-3-F5-mut E1/4 was generated by mutating both SBE-like binding sites simultaneously. Luciferase activity was measured with Luciferase Assay System (Promega) and values were normalized by β-galactosidase activity. P values were calculated using Student’s t test.

Electrophoresis mobility shift assays

Double-stranded oligonucleotides were labeled with [γ-³²P]ATP using T4 polynucleotide kinase (Promega). Binding reactions containing GST-Smad3 (SignalChem) or His-Smad4 (Abcam) recombinant proteins and labeled probes were performed for 30 minutes at room temperature. Protein–DNA complexes were separated on 5% polyacrylamide gels. The sequences of the probes used are in Supplemental Materials.

Chromatin immunoprecipitation assays

Chromatin immunoprecipitation (ChIP) assays were performed with the ChIP assay kit (Upstate Inc.) according to the manufacturer’s protocol. FET cells were treated with 4 ng/mL of TGFβ1 for 90 minutes. Cell pellets were resuspended in lysis buffer (1% SDS, 10 mmol/L of EDTA, 50 mmol/L of Tris-HCl, pH 8.1, with protease inhibitor cocktail from Sigma-Aldrich). Genomic DNA fragments were purified with a MinElute PCR purification kit (Qiagen). The primers used to amplify E1, E4, and negative control are described in Supplementary Materials.

In vivo orthotopic model and immunohistochemistry

Orthotopic implantation was performed as previously described (26). Briefly, exponentially growing green fluorescent protein (GFP)-labeled cells (5 × 10⁶) were inoculated subcutaneously into BALB/c nude mice. Once xenografts were established, they were excised and minced into 1-mm³ pieces. Two of these pieces were then subserosally implanted into cecum of other BALB/c nude mice. Sixty days postimplantation, animals were euthanized. Organs were explanted and imaged. Tissues were then processed and embedded in paraffin. Slides were cut for hematoxylin and eosin (H&E) and terminal nucleotidyl transferase–mediated nick end labeling (TUNEL) assays (Apoptag, Oncor). The apoptosis was determined quantitatively by counting the number of positively stained apoptotic bodies per field at 20× magnification. Six animals were analyzed for each type of cells. Three histologically similar fields were randomly selected from each slide for analysis. P values were calculated using Student’s t test.

Results

TGFβ signaling inhibits expression of PRL-3 in colon cancer cells

Upregulation of PRL-3 expression is associated with tumor progression and metastasis of colon cancer (14, 15). To determine whether TGFβ signaling regulates expression of PRL-3, FET cells were used in our studies. FET cells, derived from an early stage colon carcinoma, are sensitive to TGFβ-mediated growth inhibition and apoptosis (3, 11). Our results showed that expression of PRL-3 was suppressed by TGFβ in a
concentration- and time-dependent manner in FET cells (Fig. 1A, left and middle; Supplementary Fig. S2A and S2B). SB525334, a potent inhibitor of TGFβ RI kinase, was used to confirm the effect of TGFβ. SB525334 is functional in FET cells as reflected by inhibition of phosphorylation of Smad2 induced by TGFβ treatment (Supplementary Fig. S1). Treatment of FET cells with SB525334 reversed the inhibitory effect of TGFβ on expression of PRL-3 (Fig. 1A, right). In addition, inhibition of TGFβ signaling by transfection of a dominant-negative mutant of TGFβ RI (DNRII) increased the expression of PRL-3 in FET cells, whereas activation of TGFβ signaling by transfection of a constitutively active mutant of TGFβ RI T204D (RI/T204D) decreased the expression of PRL-3 (Fig. 1B, left, Supplementary Fig. S2C). Similar results were obtained in other colon cancer cells (FETα, CBS, and GEO) that retain responsiveness to TGFβ signaling. Abrogation of TGFβ signaling by ectopic expression of DNRII led to the upregulation of PRL-3 expression, whereas enhancement of TGFβ signaling by overexpression of TGFβ RI or RII resulted in downregulation of PRL-3 expression as compared with control cells (Fig. 1B, right, Supplementary Fig. S2C).

Figure 1. TGFβ signaling inhibits expression of PRL-3 in colon cancer cells. A and C, PRL-3 protein (A) and mRNA (C) expression in FET cells treated with TGFβ for 48 or 24 hours (left), 4 ng/mL of TGFβ1 for the indicated time periods (middle), or 4 ng/mL of TGFβ1 with or without 200 nmol/L of SB525334 for 48 or 24 hours (right). Quantitation of PRL-3 from Western blots and RT-PCR analyses is presented in Supplementary Figures S2A, S2B, S3A, and S3B. B, PRL-3 expression in FET cells transfected with a DNRII or a constitutively active RI (RI/T204D; left) and in FETα, CBS, and GEO cells transfected with DNRII, RII, or RI respectively (right). Quantitation of PRL-3 from Western blots analyses is presented in Supplementary Figure S2C. D, PRL-3 promoter activity in FET cells treated with 4 ng/mL of TGFβ1 for 24 hours (left) and in FET Neo and FET DNRII cells (right). Firefly luciferase values were normalized to β-galactosidase activity. The data are presented as the mean ± SD of triplicate experiments. *, P < 0.05.
We next determined whether TGFβ signaling regulated expression of PRL-3 at the transcriptional level. RT-PCR analyses showed that TGFβ repressed the expression of PRL-3 mRNA in a concentration- and time-dependent manner in FET cells (Fig. 1C, left and middle, Supplementary Fig. S3) and that the RI kinase inhibitor SB525334 reversed the inhibitory effect of TGFβ (Fig. 1C, right). Of note, levels of PRL-3 mRNA did not decrease until 12 hours after TGFβ treatment (Fig. 1C, middle). However, levels of PRL-3 protein decreased significantly as soon as 6 hours after addition of TGFβ (Fig. 1A, middle), suggesting that, in addition to regulating PRL-3 transcription, TGFβ may also affect expression of PRL-3 at a posttranslational level. Further studies will be necessary to address this possibility and the underlined mechanisms.

To determine how TGFβ signaling might regulate the promoter activity of PRL-3, a reporter plasmid of PRL-3 promoter (Prl-3-F5) was transfected into FET cells followed by treatment of TGFβ. Luciferase assays showed that TGFβ inhibited the activity of this PRL-3 promoter by approximately 55% (Fig. 1D, left). The moderate reduction of PRL-3 promoter activity by exogenous TGFβ suggests the existence of strong endogenous TGFβ activity in FET cells. To demonstrate that endogenous TGFβ suppresses the promoter activity of PRL-3, a dominant-negative mutant of TGFβ RII was transfected into FET cells (FET DNRII) to inactivate autocrine TGFβ signaling. There was a 2.2-fold increase of PRL-3 promoter activity in FET DNRII cells as compared with FET Neo control cells (Fig. 1D, right). Taken together, these results indicate that TGFβ signaling downregulates expression of PRL by inhibiting its promoter activity.

Regulation of PRL-3 expression by TGFβ is Smad3 dependent and Smad2 independent

TGFβ signaling is mediated predominantly through Smads. However, Smad-independent TGFβ signaling has also been reported in different cell types (27, 28). To determine whether TGFβ-mediated inhibition of PRL-3 expression is Smad-dependent or Smad-independent, Smad2 and Smad3 were knocked down individually or simultaneously in FET cells by shRNAs specific for Smad2 or Smad3. Expression of Smad2 and/or Smad3 was reduced efficiently and specifically in Smad2, Smad3, or Smad2/Smad3 knockdown cells whereas Smad4 expression was not affected (Fig. 2A). Western blot (Fig. 2B, Supplementary Fig. S4A), RT-PCR (Fig. 2C, Supplementary Fig. S4B) and promoter analyses (Fig. 2D) indicated that inhibition of PRL-3 promoter activity, mRNA expression and protein expression by TGFβ were partially reversed in Smad3 or Smad2/Smad3 knockdown cells whereas knockdown of Smad2 alone did not affect TGFβ-mediated inhibition. These results indicate that TGFβ suppresses expression of PRL-3 in a Smad3-dependent and Smad2-independent manner. The partial reversal of TGFβ-mediated suppression in Smad3 or Smad2/Smad3 knockdown cells may be attributed to incomplete silencing of Smad3 expression in those cells or the existence of a Smad3-independent mechanism.
PRL-3 is a direct target of TGFβ/Smad signaling

Two SBE-like sites, E1 and E4, were identified in PRL-3 promoter (Fig. 3A). Smad3 and Smad4 recombinant proteins were tested by an EMSA (electrophoresis mobility shift assay) to determine whether they bind to E1 and/or E4. The results showed that glutathione-S-transferase (GST)–Smad3 bound to wild-type E1 and E4 oligonucleotides in a concentration-dependent manner (Fig. 3B, left). Similarly, His-Smad4 showed strong binding to wild-type E1 and E4 (Fig. 3B, right). However, both proteins failed to bind to E1 or E4 oligonucleotides carrying mutations in critical nucleotides of SBE consensus sequence (E1mut or E4mut), thus demonstrating the specificity of these binding sites (Fig. 3B). The binding of Smad3 or Smad4 to E1 and E4 was further confirmed in vivo by ChIP assays, which revealed that TGFβ increased the binding of Smad3 or Smad4 to E1 and E4 of PRL-3 promoter in FET cells (Fig. 3C). Furthermore, mutations in E1, E4, or both regions of PRL-3 promoter reversed the inhibitory effect of TGFβ on PRL-3 promoter activity (Fig. 3D). These results demonstrate that Smad3/4 directly binds to E1 and E4 of PRL-3 promoter to inhibit its activity.

PRL-3 promotes cell survival under GFDS by activating the PI3K/AKT pathway

We have identified PRL-3 as a transcriptional target of TGFβ signaling. Because TGFβ has been previously shown...
to mediate apoptosis under GFDS in colon cancer cells (11), we next determined the role of PRL-3 in cell survival. Wild-type PRL-3 and a catalytically inactive PRL-3 mutant (C104S) were stably transduced into FET or GEO cells. Wild-type or mutant PRL-3 was abundantly expressed in both cell lines as compared with empty vector-transduced control cells (Fig. 4A, left). Under GFDS, ectopic expression of wild-type PRL-3 in both FET and GEO cells considerably decreased apoptosis (reflected by reduced levels of caspase 3 cleavage) as compared with control cells whereas mutant PRL-3 showed little effect (Fig. 4A, right, Supplementary Fig. S5A and S5B). In addition, wild-type but not mutant PRL-3 protected FET cells from TGFβ-induced apoptosis (Fig. 4A, right, Supplementary Fig. S5A). These observations were further confirmed by DNA fragmentation ELISA assays (Fig. 4B). Taken together, these results indicate that TGFβ suppresses cell survival in part by downregulation of PRL-3 expression. To determine whether PRL-3 promotes cell survival under other stress conditions.

Figure 4. PRL-3 promotes cell survival under GFDS through activating the PI3K/AKT pathway. Wild-type or catalytically inactive mutant of PRL-3 was stably transduced into FET and GEO cells. A, PRL-3 expression in above-mentioned cells (left) and levels of cleaved caspase 3 in FET cells under GFDS with TGFβ1 for 2 days and in GEO cells under GFDS for 3 days (right). Quantitation of cleaved caspase 3 from Western blots analyses is presented in Supplementary Figures S5A and S5B. B, DNA fragmentation assays in FET and GEO cells subjected to GFDS as described above. The data are presented as the mean ± SD of triplicate experiments. *, P < 0.05. C, AKT expression and phosphorylation in FET cells under GFDS with TGFβ1 for 2 days (left) and GEO cells under GFDS for 3 days (right). Quantitation of AKT phosphorylation from Western blots analyses is presented in Supplementary Figures S7A and S7B. D, DNA fragmentation assays in FET/PRL-3 and GEO/PRL-3 cells treated with LY294002 (25 nmol/L) for 2 or 3 days, respectively. The data are presented as the mean ± SD of triplicate experiments. *, P < 0.01 (left and middle). Levels of cleaved caspase 3 were determined in FET/PRL-3 cells transfected with a DN-AKT (right). Quantitation of cleaved caspase 3 from Western blots analyses is presented in Supplementary Figure S5C.
Besides GFDS, FET cells were exposed to UVC treatment. After UV radiation, wild-type PRL-3–expressing cells (PRL-3 WT) displayed much lower activation of caspase 3 than vector- or mutant PRL-3–expressing cells (PRL-3C104S; Supplementary Fig. S6), indicating that PRL-3 also protects FET cells from UV-induced apoptosis.

Because Pt3K/AKT is a major survival pathway in colon cancer cells, we next determined the effect of PRL-3 expression on AKT activation. Phosphorylation of AKT at Thr308 and Ser473 leads to activation of its kinase activity (29). As shown in Figure 4C, FET and GEO cells expressing wild-type PRL-3 displayed higher levels of AKT phosphorylation at Ser473 than those expressing vector or mutant PRL-3 under normal culture conditions. However, phosphorylation of AKT at Thr308 remained unchanged in all cell types (data not shown). In addition, AKT Ser473 phosphorylation was maintained at a high level in FET and GEO cells expressing wild-type PRL-3 under GFDS, whereas it decayed rapidly in vector- or mutant PRL-3–expressing cells (Fig. 4C, Supplementary Fig. S7A and S7B). Moreover, wild-type but not mutant PRL-3 antagonized TGFβ-induced decrease of AKT phosphorylation in FET cells under GFDS (Fig. 4C, left). These results indicate that PRL-3 promotes AKT signaling under stress in colon cancer cells, suggesting that PRL-3 may increase cell survival via activation of the Pt3K/AKT pathway.

Functionally, targeting Pt3K/AKT with a potent Pt3K inhibitor, LY294002, reduced survival of FET and GEO cells expressing wild-type PRL-3 (designated FET/PRL-3 and GEO/PRL-3, respectively) under GFDS (Fig. 4D, left and middle). This effect correlated with reduced phosphorylation of AKT (data not shown). In addition, transfection of a dominant-negative mutant of AKT (AKT/K179D) into FET/PRL-3 cells increased caspase 3 activation under GFDS (Fig. 4D, right, Supplementary Fig. S5C), consistent with the results obtained from LY294002 treatment.

Knockdown of PRL-3 sensitizes colon cancer cells to GFDS-induced apoptosis

To further define the role of PRL-3 in cell survival, we used an RNA interference approach to knock down the expression of PRL-3. Stable transfection of a PRL-3 shRNA vector into FET and GEO cells led to a significant reduction of PRL-3 expression in these cells (Fig. 5A). As a result, there was an increased apoptosis in PRL-3 knockdown cells (shPRL3) relative to control cells (pSR) under GFDS (Fig. 5B, Supplementary Fig. S5D). These results were confirmed by DNA fragmentation assays (Fig. 5C). These data demonstrate that downregulation of PRL-3 expression sensitizes colon cancer cells to GFDS-induced apoptosis. In addition, knockdown of PRL-3 expression accelerated decay of AKT phosphorylation under GFDS (Fig. 5B, Supplementary Fig. S7C and S7D), providing further evidence that PRL-3 regulates AKT signaling.

To test the specificity of PRL-3 shRNA, we ectopically expressed a mutant PRL-3 cDNA in GEO shPRL3 cells (designated GEO resmut) to determine whether it could rescue the phenotypes caused by knockdown of PRL-3 expression. The mutant PRL-3 cDNA harbored a silent mutation in the region targeted by the PRL-3 shRNA so that it is resistant to silencing.

Figure 5D showed that PRL-3 expression was restored in GEO resmut cells as compared with GEO shPRL3 cells (left). As a result, GEO resmut cells displayed a higher level of AKT phosphorylation under GFDS and were more resistant to GFDS-induced apoptosis than GEO shPRL3 cells (Fig. 5D, right). DNA fragmentation assays confirmed that re-expression of PRL-3 in GEO shPRL-3 cells decreased GFDS-induced apoptosis to the level that is similar to that of GEO control cells (Fig. 5C, right). Taken together, these results indicate that PRL-3 activates Pt3K/AKT survival signaling and enhances stress resistance in colon cancer cells.

PRL-3 mediates metastasis of colon cancer cells in an orthotopic model

Because cell survival under stress is an important determinant of metastasis (30–32), we next used an orthotopic model to determine the effect of PRL-3 expression on metastasis of GEO cells. PRL-3 knockdown cells (shPRL3), PRL-3–expressing cells (PRL-3), or control cells were stably transfected with GFP and characterized in the orthotopic model as described previously (26).

In vivo studies showed that animals implanted with xenografts formed by GEO control, GEO shPRL3, or GEO PRL-3 cells demonstrated 100% primary growth at the site of implantation with clear invasion of the bowel on histologic evaluation (Fig. 6A and C). In addition, sizes of primary tumors were very similar in animals bearing different types of cells (Fig. 6A). However, compared with control cells, orthotopic implantation of GEO PRL-3 cells gave rise to significantly increased metastatic localization to the liver, whereas implantation of GEO shPRL3 cells in the same model resulted in markedly diminished liver metastasis (Fig. 6B). Moreover, fluorescence imaging of explanted liver showed a remarkable increase in lesion size of liver metastases in the animals implanted with GEO PRL-3 cells relative to control animals (Fig. 6B). The livers of each animal were serially sectioned at 1-mm intervals and the presence or absence of metastatic disease was confirmed by microscopic histologic analysis (Fig. 6C). These results indicate that PRL-3 is necessary and sufficient for metastatic colonization in the liver. To determine whether PRL-3–mediated cell survival was associated with metastatic potential in vivo, TUNEL assays were performed. TUNEL staining of primary tumors showed that, as compared with control cells, there were considerably increased numbers of apoptotic cells in the tumors of GEO shPRL3 cells as opposed to decreased numbers of apoptotic cells in those of GEO PRL-3 cells (Fig. 6D). These data are fully consistent with cell survival as a key factor in determining metastasis. Taken together, these in vivo results demonstrate an important role for PRL-3 in distant colony formation, indicating a strong potential for treatment of patients with colon cancer metastases by PRL-3 antagonism.

Discussion

Metastasis has been associated with resistance to stress-induced apoptosis that can be attributed to the aberrant survival capacity of cancer cells (30–32). Therefore, inducing cell death has become an important therapeutic strategy to
treat metastasis. PRL-3 mediates cell proliferation, migration, invasion, and metastasis in different cell models (16, 33–35). However, the role of PRL-3 in cell survival has not been studied. We have demonstrated in this study that, although PRL-3 has little effect on cell proliferation and motility in FET and GEO cells (Supplementary Figs. S8 and S9), it increases cell survival capacity under stress. When tested in an in vivo orthotopic model that recapitulates the pattern of colorectal cancer metastases in humans, PRL-3 is necessary and sufficient for metastatic colonization. Previously, increased metastasis by PRL-3 has been attributed to its effect on promoting cell motility in experimental metastasis models (16, 21). However, PRL-3 has little effect on cell motility in our cell model (Supplementary Fig. S9).
assays show 100% invasion in primary tumors of control, shPRL-3, and PRL-3 cells (Fig. 6C), despite differences in their metastatic potential. Taken together with the results of TUNEL staining in Figure 6D, our studies indicate that enhanced cell survival conferred by PRL-3 is partially responsible for increased metastasis of colon cancer cells in vivo.

PRL-1 and PRL-2 are 2 additional members of PRL family (12). Although PRL-1 has been shown to play similar roles as PRL-3 in cell proliferation, migration, and invasion (36, 37), little is known about the function of PRL-2. Our studies show that knockdown of PRL-1 expression in GEO cells has little effect on cell survival under GFDS (Supplementary Fig. S10), indicating that PRL-1 is likely not involved in protecting these cells from stress-induced apoptosis. These observations suggest that PRL-1 and PRL-3 have nonredundant functions and that the unique role of PRL-3 in cell survival might account for how its elevated expression correlates with metastatic disease.

High frequency of Smad4 mutation and inactivation is closely associated with increased metastases and poor prognosis in colon cancer (38, 39). Although TGFβ signaling acts as a tumor suppressor in FET and GEO cells that express wild-type Smad4 (2, 40), Smad4-independent TGFβ signaling has been shown to promote colon cancer metastasis (41). To determine the effects of TGFβ on PRL-3 expression in Smad4-null cells, we treated SW480 cells with TGFβ and found that TGFβ increased PRL-3 mRNA and protein expression (Supplementary Fig. S11). This indicates that TGFβ-mediated activation of Smad4-independent pathways is involved in the upregulation of PRL-3, which may cooperate with other pro-oncogenic pathways to promote metastasis. Further studies will be necessary to determine the mechanisms by which Smad4-independent TGFβ signaling regulates PRL-3 expression.

We showed that wild-type but not catalytically inactive PRL-3 mediates AKT activation and maintenance under GFDS (Fig. 4C). We do not know yet the mechanisms by which PRL-3 activates AKT signaling. However, a number of kinases, including ILK, PKCα, and mTORC2, have been shown to directly phosphorylate AKT at S473 (42–44), the activating phosphorylation site most notably regulated by PRL-3. We are currently investigating whether PRL-3 affects their activity in colon cancer cells. In addition, several proteins have been proposed to be the substrates of PRL-3 including ezrin and paxillin (45, 46). However, ectopic expression of PRL-3 did not affect phosphorylation of these proteins in our cell model (data not shown).

In summary, we have identified PRL-3 as a direct target of TGFβ signaling. Loss of TGFβ signaling leads to upregulation of PRL-3 expression, which is likely a mechanism of increased PRL-3 expression in colon cancer. Upregulation of PRL-3 expression leads to activation of the PI3K/AKT axis, enhanced survival and resistance to stress-induced apoptosis, and increased metastatic potential. Our studies suggest that PRL-3 may be a promising target for cancer treatment, especially in patients with defective TGFβ signaling, which occurs in 30% to 50% of colon cancer patients (22, 23). This is
highly important considering that TGFβ signaling may actually promote metastasis at a late stage of carcinogenesis (6), which makes restoring TGFβ signaling complicated or impossible as a therapeutic strategy.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

31. Mehrrota S, Languino LR, Kyprianou N. Prohibitin regulates TGF-beta signaling complicated or impos-
Phosphatase PRL-3 Is a Direct Regulatory Target of TGFβ in Colon Cancer Metastasis

Yanjun Jiang, Xiao-Qiong Liu, Ashwani Rajput, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-1487

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/11/16/0008-5472.CAN-10-1487.DC1

Cited articles
This article cites 45 articles, 23 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/1/234.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/71/1/234.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/71/1/234.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.