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epithelial cell characteristics similar to those observed in
control DU-145/pLKO, DU-145/NTsiRNA, and NMuMG/
pDream cells.

The tissue recombination assay was used to determine
whether UA EMT-like cells showed evidence of metastasis in
vivo. Briefly, HPE or UA EMT-like cells were combined with
embryonic urogenital mesenchyme cells, grafted under the
renal capsule, collected after 3 months (23), and analyzed for
histopathology, PSA expression, and evidence of invasive
activity. Both HPE and UA EMT-like cells formed prostatic
glandular structures (Fig. 6G). Furthermore, they expressed AR,
PSA, and a second human-specific biomarker human mito-
chondria (hMT). Because PSA is human-specific, it was used to
track the ability of HPE or UA EMT-like cells to migrate out of
the tumor graft and into the adjacent kidney tissue. Only PSA-
producing cells from UA EMT grafts, but not HPE grafts,
infiltrated locally into the kidney parenchyma (Fig. 6H). Fur-
thermore, 1 overt metastatic lesion to the lung was observed in
the UA EMT group (Fig. 6I) and cells within this lesion
expressed PSA, confirming that they were of human origin.
The observation that only 1 overt lesion arose in a distant organ
implied that while UA EMT cells could metastasize locally,
additional events were likely required for a more aggressive
metastatic phenotype.

Discussion

Our findings, together with previous reports, show for the
first time that STMNI is a dual-function protein, which is
involved in suppressing metastasis and in promoting onco-

genesis. In normal NMuMG as well as in DU-146 and primary
prostate cancer cells, STMN1 maintains cell-cell contacts,
inhibits emergence of EMT, and downregulates expression
and activation of MMP-2 and MMP-9. MMPs themselves also
carry out dual roles in tumor progression and tumor suppres-
sion; however, this response seems to be tumor type-specific
(35-37). Our study indicates that in prostate and breast
epithelial cells, MMP-2 and MMP-9 promote tumor progres-
sion. As diagrammed in Fig. 7, there may be a predicative
window-of-opportunity in which conserving STMN1 expres-
sion would inhibit the emergence of prometastatic disease.
Identifying this stage in cancer progression would have major
impact on the clinical management of epithelium-derived
tumors about when targeted therapies would be most suc-
cessful. Thus, the challenge is to conserve nonpathologic levels
of STMNI1 expression in epithelial tumors, as this would be
expected to limit metastatic disease, rather than ablating
STMNT1, which could be expected to lead to metastatic disease.

Prostate cancer is one of the most difficult cancers to
diagnose because unlike breast and colon cancer, there is no
evidence that prostate cancer progresses through chronologic
stages from cancer initiation to metastatic disease (38).
Instead, prostate cancer is a multifocal cancer, which is
evaluated by a sum of the 2 most prominent histopathologic
Gleason grades (39). Gleason grades are not arranged in an
order of biologic progression. Instead, they are based on
physical histopathologic criteria that describe the character-
istic heterogeneity of morphologies found in prostate cancer
and range from 1 through 5 in which 1, 2, and 3 are considered
to be low to moderate grade and 4 and 5 are considered to be
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Figure 6. Level of STMN1 A

expression and tumor stage dictate

EMT and prometastatic behavior

in vivo. Primary prostate epithelial
cells were cultured from prostate
biopsies ranging from BPH to UA
using standard epithelial cell culture
conditions detailed in Gu and
colleagues (23). Phase contrast
microscopy of primary HPE (A)

or UA EMT-like (B) cells.
Immunofluorescence microscopy of
STMNT1, cell junction proteins
(20O-1, E-cad), mesenchymal marker
(Vim), and epithelial cell markers [AR,
PSA, adipophilin (Adipo), CD59].

C, gPCR analysis of STMN1 mRNA
expression in HPE and EMT-like
cells. STMN1 mRNA levels were
normalized to ribosomal protein L32
(RPL32) mRNA. D, migration assay.
E, invasion assay. F, proliferation
assay. n > 3 experiments. The values
shown on graphs represent the total
cell count mean + SEM of 4 wells
per treatment; **, P < 0.001;

*** P < 0.0001. G-I, HPE and
EMT-like tissue recombination
assay. Recombinant HPE or
EMT-like grafts were analyzed for
expression of human-specific
markers (hMT, PSA) and AR (n = 5).
H, immunofluorescence microscopy
of kidneys adjacent to recombinant
grafts. Top, kidney from EMT-like
graft. Bottom, kidney from HPE graft.
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Table 1. A high Gleason score appears
predictive of EMT. Primary prostate epithelial
cells were cultured from prostate biopsies and
scored for the emergence of EMT-like cells

Diagnosis N of cases EMT %
BPH 23 0 0
PIN 5 0 0
Gleason score 5 12 0 0
Gleason score 6 33 0 0
Gleason score 7 4 0 0
Gleason score 8 7 5 714
Gleason score 9 6 5 83.3
Total 90 10 11.1

high grade (38, 39). Our study presents the first biologic
evidence that a histopathologic Gleason score of 8 and 9 are
predictive of the emergence of EMT-like cells. Furthermore,
novel observations include the ability of these cultured human
EMT-like cells to develop into PSA-producing prostate tumors
and their ability to metastasize locally into the surrounding
kidney parenchyma in vivo. Interestingly, distal metastasis was
limited to the discovery of 1 overt PSA(+) lesion, suggesting
that tissue-derived EMT-like cells require additional events or
mutations that promote aggressive spread of the disease.
Whether these mutations arise in the tissue-of-origin or at a
metastatic site remains to be determined.

A high Gleason score is associated with tumor spread (38).
Downregulation of STMNI1 expression while prostate cancer is
still organ-confined could potentially be used as a prognostic
biomarker for the emergence of metastatic disease. Whether
STMNT1 overexpression in metastatic prostate cancer lesions is
associated with improved patient survival or alternatively, poor
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Figure 7. Schematic defining the
window-of-opportunity for
conserving STMN1 expression.
Top, epithelial cells undergoing
EMT, invading through the
basement membrane into the
underlying stroma, and
establishing epithelial-like lesions
at metastatic sites. Middle, STMN1
expression and key cellular events
during EMT and metastasis. The
hatched blue box summarizes the
findings in this study. Bottom,
mechanisms underlying the
prometastatic events induced by
decreased STMN1 expression.
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clinical outcome, remains to be determined. Analysis of a
large cohort of 546 colorectal cancers (stage I-1V) from 2
independent prospective cohort studies (the Nurses' Health
Study and Health Care Professionals Follow-up Study)
showed that STMNI1 overexpression was independently
associated with improved patient survival (35-37). The
outcome of this study suggests that STMN1 overexpression
could be a compensatory mechanism by which epithelial
cells attempt to maintain cell-cell contact and normal cell
function. In this event, it would be of benefit to conserve
STMNI1 expression and limit metastatic spread through
therapeutic management. Alternatively, other studies have
reported that STMNI1 overexpression is an independent
predictor of poor clinical outcome (35-37). While the cor-
relation of STMNI overexpression with poor prognosis is
suggestive of oncogenic activity, this has not been confirmed
in translational studies using cells derived from these can-
cers. Clearly, additional work needs to be done to elucidate
the function(s) of STMNI in both normal and cancer
epithelium.

A challenge to the EMT hypothesis has been the inability to
detect EMT cells in tissue sections from tumors (40, 41).
Primary UA EMT-like cells retain expression of numerous
epithelial cell-specific proteins, including PSA and prostasomal
proteins. If transitioning to a mesenchymal phenotype does
not abrogate epithelial cell secretory function, this may in part

account for the difficulty in identifying cells-in-transition
during histopathologic analysis of tissue sections.

The MAPK pathway is one of the Smad-independent mechan-
isms by which TGF-B regulates cell motility and EMT (34). Our
study shows that loss-of-STMNI1 alone is sufficient to activate
p38 phosphorylation and MAPK signaling. However, TGF-31
still increases phospho-p38 expression further in a cooperative
manner. Therefore, cross-talk between STMN1 and p38 MAPK/
TGF-P signaling may emerge as an important regulatory mech-
anism in conserving an epithelial cell phenotype.

Our study provides a crucial mechanism for STMN1-induced
conservation of an epithelial cell phenotype. While STMN1
seems to be an attractive therapeutic target, its dual function
as both a metastasis suppressor and oncogene would need to
be considered when developing rational therapeutic modali-
ties to treat epithelial cell-derived cancers.
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