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outer rim of the explants. These results suggest that iNGR
and iRGD share a similar CendR-mediated transport mecha-
nism to penetrate tumor tissue.

Systemic iNGR selectively accumulates and penetrates
into tumors

Having determined that the CendR motif within the iNGR
peptide can be proteolytically activated to trigger interaction
with NRPs and penetration into cells and tissues, we assess-
ed the homing of iNGR in vivo. Intravenously administered
iNGR phage accumulated within the tumor and penetrated
into the tumor stroma more than CNGRC phage (Fig. 3A and B,
top). The iNGRt phage also showed high tumor penetration,

presumably because of the high expression of NRP-1 on tumor
vasculature and tumor cells, but this phage also accumulated
in lungs and heart of the tumor mice. iNGR penetration
could be blocked by concomitantly administering a neutral-
izing anti-NRP-1 antibody, but not a control antibody (Fig. 3B,
bottom). Vascular targeting of iNGR was not inhibited by
the anti-NRP-1 treatment (arrows, Fig. 3B, left bottom), sup-
porting the notion that the CendR activation occurs after iNGR
accomplishes NGR-dependent vascular targeting. Intrave-
nously injected FAM-INGR peptide also accumulated in 4T1
breast tumors (Fig. 3C) and BxPC-3 pancreatic tumors (Sup-
plementary Fig. S5A) more strongly than FAM-CNGRC. FAM-
iNGR extravasation within tumor tissue was greater than

Figure 3. Systemic iINGR selectively
accumulates in and penetrates into
tumors. A and B, in vivo phage
homing to orthotopic 4T1 tumors.
Phage were intravenously injected
into 4T1 bearing mice and allowed
to circulate for 40 minutes. After
perfusion of the mice, tissues were
collected and homogenized for
phage titration (A) or processed for
phage (green) and CD31 (red)
immunostaining (B). Blue
represents DAPI staining. DAPI,

4’ 6-diamidino-2-phenylindole. In
some cases, INGR phage was
co-injected with 50 ug of
neutralizing NRP-1 antibody or
rabbit IgG (B, bottom). *, P < 0.05;
one-way ANOVA. Scale bars, 50
um. Error bars, SE. C-E, in vivo
peptide homing to 4T1 tumors. One
hundred micrograms of FAM-
peptides (green) were
intravenously injected into
4T1-bearing mice. One hour later,
the mice were perfused, and
tissues were collected and imaged
on a UV light table (C and E). Then,
the tissues were processed for
CD31 (red) and nuclei (blue)
staining (D). Scale bars, 50 um. F, in
vivo homing of NWs to 4T1 tumors.
CNGRC- or iNGR-coated NWs
(green) were injected into the tail
vein of 4T1 tumor mice. After 4
hours, the mice were perfused, and
tumors were collected and
subjected to CD31 staining (red).
Blue represents DAPI staining.
Confocal images at x20 and

x40 magnifications are shown.
Scale bars, 100 um (x20), 50 um
(x40). The arrows point to blood
vessels positive for phage (B) or
peptide (D). Note that the INGR
phage, peptide, and NWs
effectively penetrated 4T1 tumors
and that the anti-NRP-1 antibody
inhibited the tumor penetration of
iNGR phage.
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Figure 4. iNGR triggers tumor-specific penetration of co-administered compounds. A and B, one milligram of Evans Blue dye was intravenously
co-injected with 4 umol/kg of peptides or PBS. After 40 minutes of circulation, the mice were extensively perfused, and tumors were collected for
imaging under white light (A). Evans blue was extracted from the collected tumors and organs and quantified by ODgoo measurement (B). C, five mg/kg
of FAM-CGKRK-conjugated NWs (green) were injected with or without 4 umol/kg of iINGR peptide into the tail vein of 4T1 bearing mice. After 5 hours of
circulation, tumors were collected for CD31 immunostaining (red). Blue represents DAPI staining. DAPI, 4’,6-diamidino-2-phenylindole. Two
representative images of 3 tumors are shown. Scale bars, 100 um. D, about 10 mg/kg of doxorubicin (DOX) was intravenously co-injected with

4 umol/kg of the indicated peptides in 4T1-bearing mice. After 1 hour of circulation, the mice were extensively perfused, and the tissues were collected
for DOX quantification. Results are shown as fold increase over DOX alone. *, P < 0.05; one-way ANOVA. Error bars, SE.

that of FAM-CNGRC (Fig. 3D). FAM-iNGR selectively pene-
trated into tumors and not into control organs (Fig. 3E).
Elongated iron oxide nanoparticles (nanoworms) coated with
iNGR also showed higher extravasation than CNGRC-NWs
(Fig. 3F and Supplementary Fig. S5B). The nanoworms were
less efficient than phage in penetrating the tissue, likely
because they are larger in size (nanoworms, 30 x 70/200 nm;
phage, 55 nm).

iNGR triggers tumor-specific penetration of co-
administered compounds

The engagement of NRP-1 increases vascular permeability
(23), and iRGD triggers this phenomenon specifically in tumors
(5). We found that iNGR significantly increased extravasation
and accumulation of the albumin-binding dye Evans blue in
4T1 tumors, but not in nontumor tissues. CNGRC or vehicle
alone had no effect on the biodistribution of the dye (Fig. 4A
and B and Supplementary Fig. S6). iNGR facilitated tumor-
specific accumulation of Evans blue in CT26 colon and LLC
lung tumor models as well (Supplementary Fig. S7). We also
co-administered iNGR with nanoworms coated with a tumor-
homing peptide, CGKRK (20), which brings the nanoworms to
tumor vessels but does not trigger extravasation. iNGR allowed

the NWs to extravasate into the tumor parenchyma (Fig. 4C).
Finally, iNGR triggered more penetration of doxorubicin into
the tumors than doxorubicin alone or doxorubicin combined
with CNGRC (Fig. 4D).

iNGR enhances anticancer drug efficacy

Having found that iNGR co-administration increased the
local accumulation of doxorubicin within tumors, we investi-
gated the effect of iNGR on the activity of doxorubicin. We
treated orthotopic 4T1 breast tumor mice with a combination
of doxorubicin (3 mg/kg) and 4 umol/kg of iNGR, a control
peptide, or PBS every other day. As shown in Fig. 5A, iNGR,
but not CNGRC, enhanced the antitumor effect of doxorubi-
cin. iNGR alone had no effect on tumor growth. Loss of body
weight as an indicator of doxorubicin toxicity was not affected
by the peptide co-administration (Fig. 5B). These results show
the potential of iNGR as an adjuvant to increase the efficacy of
co-administered anticancer drugs.

Discussion

We report here the design of a new tumor-penetrating
peptide, iNGR. The peptide was constructed by combining the
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Figure 5. iNGR enhances efficacy of anticancer drugs without
affecting side effects. A, mice bearing orthotopic 4T1 tumors were
treated every other day with PBS or 3 mg/kg of doxorubicin (DOX)
combined with 4 umol/kg of CNGRC or iINGR peptide. Tumor
growth was assessed every other day. B, body weight changes of
the tumor mice from the treatment studies (A). Percentage of body
weight shift is shown. *, P < 0.05; 2-way ANOVA; “***, P < 0.001;
2-way ANOVA. Error bars, SE.

tumor-targeting motif NGR and tissue-penetrating CendR
motif into a 9-amino acid cyclic peptide. The iNGR peptide,
homed to tumor vessels, exited the vessels, and penetrated into
the tumor mass. It was able to take both coupled and co-
administered payloads with it. When the co-administered
payload was a drug (doxorubicin), the efficacy of the drug
increased. These results show that it is possible to use the
existing knowledge to construct a new tumor-specific, tissue-
penetrating peptide.

The mechanisms underlying iNGR activity are similar to
those described for iRGD (4, 5). The receptor for the tumor-
targeting motif NGR is a variant form of aminopeptidase N (12).
The binding of iNGR to cultured cells was specifically inhibited
by CNGRC, indicating that iNGR binds to the same receptor.
NGR peptides are known to spontaneously undergo slow
deamidation of the asparagine residue into isoaspartic acid.
The resulting isoDGR peptides, like RGD peptides, bind to ov
integrins. Our results exclude integrin involvement in the

binding of iNGR peptide and phage to cultured cells. It is also
unlikely that isoDGR formation affects the in vivo tumor
targeting of iNGR because the deamidation process takes
several hours (24), whereas the half-life of intravenously
injected peptides of the size of iNGR is only minutes (25).
Thus, iNGR and iRGD bind to different primary receptors
on cells.

Upon engagement of the iRGD peptide at the plasma
membrane of target cells, a proteolytic cleavage by a yet-to-
be-identified enzyme(s) exposes the CendR sequence, which
subsequently binds to NRP-1 (4). Our evidence indicates that
the same mechanism operates with iNGR. First, phage dis-
playing the predicted CendR product of iINGR, CRNGR (iNGRt)
bound to NRP-1 and NRP-2, and did so with a higher affinity
than CRGDK fragment of iRGD. The reason for the difference
may be that a peptide with a C-terminal arginine binds more
efficiently to NRPs than a peptide with alysine C-terminus (26).
Comparison of the tumor-homing efficacy of iRGD with an
arginine or a lysine (CRGDK/RGPDC) showed that the lysine-
containing form was more effective in vivo (4). It may be that
other effects of the lysine residue, such as stronger integrin
binding or higher susceptibility to protease cleavage, overcome
the effect of lower affinity for NRPs. Second, iNGR, both as a
synthetic peptide and on phage was taken up by cells in an
NRP-dependent manner. Third, we isolated the iNGRt CendR
fragment from inside cells treated with the intact iNGR pep-
tide, as has been previously done with iRGD (4). Fourth, the
co-injection of iNGR phage with neutralizing anti-NRP-1
antibody resulted in a reduced extravasation of iNGR. These
results show that iNGRt, the active form of iNGR, is generated
through proteolysis and that the tumor-penetrating proper-
ties of iNGR are based on its ability to activate the CendR
pathway.

The activation of iNGR into iNGRt appears to take place
only in tumors because iNGR only accumulated in tumors.
In contrast, the truncated iNGRt form, while showing pre-
ferential homing to tumors, also accumulated in the lungs
and heart. This homing pattern reflects the expression of
NRP-1, which is universal in the blood vessels but particu-
larly high in tumor vessels (27). The reason for the selective
activation of the cryptic CendR motif in tumors is likely to be
that binding to the primary receptor is needed for the activ-
ating proteolytic cleavage. Previous work from our labora-
tory has shown that an iRGD variant that does not bind to
integrins, but contains a CendR motif, does not penetrate
into cultured cells, whereas iRGD does (4). The nature of
the primary receptor does not seem to matter, as long as the
receptor is tumor specific. iRGD and iNGR bind to different
primary receptors, but both become activated in cell cul-
tures and in tumors. Moreover, we have recently shown that
a previously identified tumor-homing peptide, CGNKRTRGC
(LyP-1; ref. 28) also penetrates into tumors through the
CendR/NRP mechanism (6). The primary receptor for this
peptide is p32/gClqR/HABP1, a mitochondrial protein
expressed at the cell surface in tumors (29). Thus, our results
show that at least 3 different primary receptors can initiate
the sequence of events that leads to the NRP-dependent
activation of the CendR pathway in tumors. Importantly, the
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difference in the primary receptors allows us to differentially
target tumors or tumor areas based on receptor expression
patterns, providing multiple options to enhance tumor
therapy with tumor-specific CendR peptides.

The experiments with phage, fluorophore-labeled peptide,
and nanoparticles showed the ability of iNGR to take coupled
payloads into the extravascular tumor tissue. Our results
further show that such enhanced delivery and tumor penetra-
tion also applies to compounds co-administered with iNGR.
Importantly, we showed this for doxorubicin, the antitumor
activity of which was increased by injecting the drug together
with iNGR.

The co-administration strategy has significant advantages.
First, because chemical coupling is not needed, new chemical
entities are not created, providing a faster route for clinical
development. Second, unlike targeting of compounds chemi-
cally coupled to a homing element, the co-administration
process is not strictly dependent on the number of available
receptors, which seriously limits the amount of a drug that can
be delivered to a target (30).

Taken together, our results show that iNGR possesses
the same targeting ability as CNGRC, supplemented with
cell-internalizing and tumor-penetrating properties. This
transformation suggests an important principle: a targeting
peptide can be ad hoc improved by the addition of a CendR
motif, which endows the peptide with tissue-penetrating
properties and allows enhanced delivery of co-administered
compounds into a target tissue. Rational optimization of
targeting peptides in this manner may also have valuable
applications in other diseases.
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