


















directly promotes hypoxia-associated drug resistance by
enhancing the expression of antiapoptotic proteins and dimin-
ishing the expression of proapoptotic proteins or by nonapop-
totic mechanisms (26, 27), inhibition of RHBDF1-facilitated
HIF1a stabilization may potentially be beneficial not only to
suppress tumor angiogenesis, but also to curb cancer cell

resistance to apoptosis-inducing chemotherapies. In this
regard, our study has demonstrated that by using the peptide
mimic VR56, we may intervene RHBDF1-facilitated stabiliza-
tion of HIF1a by inhibiting RHBDF1 tyrosine phosphorylation.
This suggests that RHBDF1 may serve as a target for cancer
drug development.

Figure 6. Interruption of RHBDF1 tyrosine phosphorylation causes an inhibition of RHBDF1-facilitated HIF1a stabilization and disruption of RHBDF1 with
RACK1. A, ELISA measurement of VEGF secretion by MDA-MB-231 cells in hypoxia treated with various peptides (20 mmol/L, 24 hours). B, HIF1a
levels in MDA-MB-231 cells treated with the indicated peptides for 24 hours, followed by 6-hour culture in hypoxia. C, HIF1a stability in RHBDF1- or empty
vector-transfected MCF7 cells treated with VR56 or ER20 in hypoxia. D, HIF1a stability in RHBDF1-overexpressing MCF7 cells in response to various
VR56 doses. E, inhibition of RHBDF1 tyrosine phosphorylation by VR56 in RHBDF1-overexpressingMCF7 cells. F, disruption of RHBDF1–RACK1 interaction
by VR56 in MCF7 cells cotransfected with RHBDF1 and RACK1; the cells were treated with vehicle, ER20, or VR56 for 48 hours in normoxia, followed by
6-hour culture in hypoxia. G, RACK1 binding to RHBDF1 or HIF1a in MCF7 cells cotransfected with RHBDF1 and RACK1 in response to VR56 or ER20
treatment; the cells were treatedwith the peptides for 24 hours in normoxia, followed by 6-hour culture in hypoxia in the presence ofMG132. Each experiment
was repeated two times and representative results from one experiment are shown.
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It is of interest that noncatalytic rhomboids, such as human
RHBDF1, may function as regulatory proteins. Noncatalytic
rhomboids are considered to have evolved from rhomboid
proteases that lost their catalytic activity but retained their
location in the protein synthesis apparatus (10), and plausibly
maintained their abilities to bind to what were once their
substrates. New functions as regulatory proteins may be
acquired by taking advantages of the expression pattern,
subcellular location, and substrate-binding capacity. Consis-
tent with this notion is the wide range of inactive cognates of
many enzymes (28). That RHBDF1 may have evolved from a
membrane-bound protease into a regulatory protein may
exemplify this evolutionary route.
In summary, our experimental data are consistent with the

view that RHBDF1, RACK1, and HSP90 form a "molecular
switch" that controls oxygen-independent degradation of
HIF1a. In this mechanism, RHBDF1 facilitates HIF1a stability
by preventing RACK1 binding to HIF1a, thus attenuating
ubiquitin-mediated HIF1a proteasomal degradation and shift-
ing HIF1a binding toward HSP90. RHBDF1 is therefore an
essential component of cell survival mechanism underlying
cellular responses to oxygen deficiency. In addition, our find-
ings illustrate that intervention of RHBDF1 activity by gene
silencing or by specific inhibition of tyrosine phosphorylation
of the RHBDF1 protein presents a potentially new approach to
develop anticancer therapeutics.
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