NUAK2 Amplification Coupled with PTEN Deficiency Promotes Melanoma Development via CDK Activation

Takeshi Namiki1,2,3, Tomonori Yaguchi2, Kenta Nakamura2,4, Julio C. Valencia1, Sergio G. Coelho1, Lanlan Yin1, Masakazu Kawaguchi1, Wilfred D. Vieira1, Yasuhiko Kaneko5, Atsushi Tanemura6, Ichiro Katayama6, Hiroo Yokozeki3, Yutaka Kawakami2, and Vincent J. Hearing1

Abstract

The AMPK-related kinase NUAK2 has been implicated in melanoma growth and survival outcomes, but its therapeutic utility has yet to be confirmed. In this study, we show how its genetic amplification in PTEN-deficient melanomas may rationalize the use of CDK2 inhibitors as a therapeutic strategy. Analysis of array-CGH data revealed that PTEN deficiency is coupled tightly with genomic amplification encompassing the NUAK2 locus, a finding strengthened by immunohistochemical evidence that phospho-Akt overexpression was correlated with NUAK2 expression in clinical specimens of acral melanoma. Functional studies in melanoma cells showed that inactivation of the PI3K pathway upregulated p21 expression and reduced the number of cells in S phase. NUAK2 silencing and inactivation of the PI3K pathway efficiently controlled CDK2 expression, whereas CDK2 inactivation specifically abrogated the growth of NUAK2-amplified and PTEN-deficient melanoma cells. Immunohistochemical analyses confirmed an association of CDK2 expression with NUAK2 amplification and p-Akt expression in melanomas. Finally, pharmacologic inhibition of CDK2 was sufficient to suppress the growth of NUAK2-amplified and PTEN-deficient melanoma cells in vitro and in vivo. Overall, our results show how CDK2 blockade may offer a promising therapy for genetically defined melanomas, where NUAK2 is amplified and PTEN is deleted. Cancer Res; 75(13); 2708–15. ©2015 AACR.

Introduction

Recent advances in cancer genomics facilitate the elucidation of aberrant downstream pathways in tumor cells with genomic aberrations and pave the way to develop specific therapies for novel oncogenes and tumor-suppressor genes in many types of cancers (1–4). In melanomas, several genomic aberrations, such as mutations, amplifications, and deletions in BRAF, NRAS, INK4A, MITF, PREX2, GNAQ, and KIT, have been reported, and recent analyses using array-CGH data also suggested that NUAK2, which resides at chromosome 1q32, is an important gene that regulates cell-cycle progression and cell migration in melanoma cells (2, 5–14). The significance of NUAK2 in melanomagenesis is highlighted by the fact that high expression of NUAK2 has an impact on the survival of patients with acral melanomas, in addition to the fact that NUAK2 participates in the regulation of cell proliferation of melanomas in general (12). On the other hand, synergistic effects of several genomic aberrations are also quite important to facilitate tumorigenesis of cancer cells such as that the PI3K pathway participates in melanomagenesis (15, 16).

The elucidation of genomic aberrations, including mutations, has progressed using systematic approaches (17). However, detailed mechanisms controlling cell-cycle progression by NUAK2 and additional genes remain to be elucidated. Analyses of cell-cycle progression in NRAS-mutated and MITF-amplified melanomas showed that control of the cell cycle is differently regulated by CDKs in melanoma cells, where CDK4 is a key driver in NRAS-mutant melanomas, whereas CDK2 has a pivotal role in melanomas with high expression of MITF (18–20). Those results imply that elucidation of mechanisms regulating the cell cycle by different genomic aberrations should reveal the different impact of CDKs on the cell cycle.

In melanomas, BRAF mutations have been identified as activating mutations that facilitate melanomagenesis, and this discovery accelerated molecular targeted therapies against melanomas using drugs such as vemurafenib and dabrafenib (1, 2). However, BRAF mutations have diverse discrepancies among subtypes of melanomas (21). Some subtypes of melanomas, such as acral and mucosal melanomas, have low frequencies of BRAF mutations and are speculated to respond poorly to those therapies.
Inhibition of CDK2 Inhibits Melanoma Growth

targeting BRAF mutations. Molecular targeted therapies aimed at genomic aberrations other than BRAF mutations should be developed for the better management of patients with those subtypes of melanomas.

In this study, we explore additional genomic aberrations and downstream pathways of NUAK2 and demonstrate that NUAK2 is an efficient therapeutic target by abrogating the growth of cutaneous melanomas.

Materials and Methods

Tumor specimens

We obtained 91 paraffin-embedded specimens of primary melanomas from three institutions. This study was approved by the Tokyo Medical and Dental University Research Committee, the Osaka University Clinical Research Committee, and the Saitama Cancer Center Research Ethics Committee. Fifty-six tumors were classified as acral melanomas and 35 as non-chronic sun-induced damage (CSD) melanomas, but none was a CSD melanoma according to the definition by Curtin and colleagues (22).

Cell lines

Normal human melanocyte and melanoma cell lines were cultured and maintained as previously described (23). C32, A375, and Malme-3M melanoma cells were purchased from the ATCC. SKMel28 and SKMel23 melanoma cells were kindly provided by Dr. H. Murata (Shinshu University, Matsumoto, Japan). The Mel2 melanoma cell line was established from a lymph node metastasis of a 68-year-old Japanese male acral melanoma patient in 1998 in our laboratory, as described previously (24). C32, mel2, mel18, and SM2-1 melanoma cell lines were cultured in RPMI1640 supplemented with 10% heat-inactivated FBS, 100 IU/mL penicillin, and 100 µg/mL streptomycin at 37°C in a 5% CO₂ incubator. All other melanoma cell lines were cultured in DMEM with 5% FBS. The original C32, A375, and Malme-3M melanoma cells were short tandem repeat (STR) DNA profiled in 2012.

Vectors, siRNA transfection, and Lentiviral infection

SMARTpool siRNAs against CDK2 and PTEN were purchased from Thermo Fisher Scientific. Lentiviral vectors carrying shRNA targeting NUAK2 (AAAB66-F-6: AAAAAAGGCTGCTTTGAAG and AAAB66-F-7: AAAAAAGCTGCTTTGAAG) and the empty vector were purchased from Open Biosystems in pLKO.1puro vector. For siRNA experiments, cells were seeded at 3.0 × 10⁵ cells/well in 6-well plates and were transfected either with an siNT (non-targeting) or with an siRNA against CDK2 or PTEN (SMARTpool siRNAs, Thermo Fisher Scientific) at a concentration of 100 pmol/well using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s protocol. All siRNA experiments were performed in triplicate. Infection of Lentivirus containing shRNA constructs with pLKO.1 against NUAK2 into cells was performed as previously described (12).

In vitro assays

For cell number analyses using siRNA, cells were seeded at 3.0 × 10⁵ cells/well in 6-well plates in triplicate. Cell numbers were counted at days 0, 2, and 4 after transfection of siRNA. For cell number analyses treated with roscovitine, cells were seeded at 2.0 × 10⁵ cells/well in 6-well plates. Cell numbers were counted at days 3, 5, and 7 after treatment with roscovitine.

For proliferation assays of C32 and SM-KT1 cells, cells were seeded at 1.0 × 10⁵ cells/well in 24-well plates in triplicate. At 48 hours, cell proliferation was measured using the MTS assay according to the manufacturer’s protocol (Takara Bio).

For colony growth assays with roscovitine, cells were seeded at 1.0 × 10⁴ cells/well (C32, mel2, and mel18) or 5.0 × 10⁴ cells/well (A375, SKMel28, and SKMel23) in 6-well plates in triplicate. After treatment with roscovitine for 14 days, cells were fixed and stained with crystal violet; measurements were performed at an optical density of 610 nm.

Cell-cycle profile analyses were performed as previously described (12). Cells were treated with LY294002 at 20 µmol/L for 24 hours.

Animal model

All animal experiments were approved by the Animal Care and Use Committee of the Keio University. Of note, 3 × 10⁶ C32 melanoma cells, 3.0 × 10⁶ SM-1 melanoma cells, and 3.0 × 10⁶ mel18 melanoma cells were injected subcutaneously into nude mice (4 or 5 per group, as noted). Seven days after injection of tumor cells, mice were orally treated with 2 mg/dose roscovitine (every day for 10 days). Tumor sizes were then measured at day 10 of treatment.

Immunoblotting

Immunoblotting was performed as previously described (20). Antibodies used included a rabbit monoclonal anti-phospho (Ser473) Akt antibody (1:1,000; Cell Signaling Technology), a rabbit polyclonal anti-NUAK2 antibody (1:1,000; Proteintech Group), a mouse monoclonal anti-actin antibody (1:1,000; Abcam), a rabbit polyclonal anti-CDK2 antibody (1:2,000; Santa Cruz Biotechnology), a rabbit monoclonal anti-CDK4 antibody (1:1,000; Cell Signaling Technology), a mouse monoclonal anti-CDK6 antibody (1:500; Abcam), a rabbit monoclonal anti-p21 antibody (1:1,000; Cell Signaling Technology), a rabbit monoclonal anti-p27 antibody (1:1,000; Abcam), a rabbit monoclonal anti-Akt(pan) antibody (1:1,000; Cell Signaling Technology), and a rabbit monoclonal anti-PTEN antibody (1:1,000; Cell Signaling Technology).

Immunohistochemical analysis

IHC was performed as previously described (12). Antibodies were used at the following dilutions: anti-phospho (Ser473) Akt (1:25), anti-PTEN (1:100), anti-NUAK2 (1:100), anti-p27 (1:100), and anti-CDK2 (1:2,000). For immunostaining of CDK2 and p27, staining was developed with a Vector VIP Substrate Kit (Vector Laboratories) in pigmented melanomas or with a Vector DAB Substrate Kit (Vector Laboratories) using counterstaining in nonpigmented melanomas. Cells stained in the nucleus and/or both the nucleus and the cytoplasm were counted as positive, and cells that stained only in the cytoplasm were counted as negative. Immunostaining of CDK2 was scored from 0 to +3 (0, 0 to 10%; +1, 11% to 25%; +2, 26% to 50%; or +3, 51% to 100%), depending on the percentages of cells in a blind fashion by three observers. The basal expression group (negative staining group) includes specimens with a 0 score.
and the overexpression group (positive staining group) includes specimens with +1, +2, or +3 scores.

IHC using fluorescence was performed as previously described (12) using the anti-p21 antibody (1:100). Images were captured using a Leica DMR B/D MLD fluorescence microscope (Leica) and a Dage-MTI 3CCD 3-chip color video camera (Dage-MTI).

Statistical analysis

For comparisons between two groups, P values were calculated using two-tailed Student t tests. Repeated two-way ANOVA analysis was applied to check the effect of roscovitine on C32 and mel18 cells. In all the experiments, differences were considered statistically significant at P < 0.05. Statistical analyses were performed using SAS 9.2. The Fisher exact test was used to test the relationship between NUAK2 expression and p-AKT (S473) in acral melanoma and non-CSD patients. The differences of survival time among patients with different types of gene expression were tested by the log-rank test. Kaplan–Meier curves were performed in the R Survival package.

Results

Downstream pathways affected by NUAK2

To efficiently explore downstream targets that could suppress the growth of NUAK2-amplified melanoma cells, we set out to elucidate additional genomic changes and mechanisms that would facilitate the identification of targets in the downstream pathway of NUAK2. We first explored potential correlations between NUAK2 amplification and genetic aberrations of other melanoma-related genes: CDKN2A deletion, CDK4 gain, MDM2 gain, CCND1 gain, and PTEN deletion using a public array database (series GSE2631). Biostatistical analysis showed that only a deletion of PTEN correlated with the gain of "RP11-243M13," which is the nearest clone to NUAK2 (P = 0.0004), in acral melanomas. To confirm this, we used immunohistochemical analyses of clinical specimens to show that the expression of NUAK2 and p-Akt (S473) has a significant correlation (P < 0.001) in acral melanomas (Table 1; Supplementary Figs. S1 and S2 and Supplementary Table S1). Kaplan–Meier curves were used to show survival time differences among patients with different types of gene expression, and relapse-free survival time of patients with expression of both NUAK2 and p-Akt (S473) was dramatically shorter than acral melanoma patients with either NUAK2 or p-Akt (S473) alone (P = 0.002). B, relapse-free survival time of non-CSD melanoma patients with expression of both NUAK2 and p-Akt (S473) was not different from those of either NUAK2 or p-Akt (S473) alone (P = 0.721). Log-rank test was used to detect survival time differences among three groups of patients: (i) neither NUAK2 nor p-Akt (S473) positive; (ii) either NUAK2 or p-Akt (S473) positive; (iii) both NUAK2 and p-Akt (S473) positive. If we only compare groups 3 and 2 in acral melanomas, the P value is 0.003.

Table 1. Relationship of NUAK2 and p-Akt (S473) expression by immunohistochemical analyses using clinical specimens

<table>
<thead>
<tr>
<th>Frequency</th>
<th>NUAK2 expression</th>
<th>p-Akt (S473) expression</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>29 (51.97%)</td>
<td>2 (3.37%)</td>
<td>2.70E-01</td>
</tr>
<tr>
<td>Negative</td>
<td>12 (21.43%)</td>
<td>15 (25.29%)</td>
<td>0.84E-01</td>
</tr>
<tr>
<td>Total</td>
<td>41 (73.21%)</td>
<td>17 (30.00%)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The contingency table displays variable values. The Fisher exact test shows that the expression of NUAK2 and p-Akt (S473) has a significant correlation (P < 0.001) in acral melanomas.

Figure 1.

Kaplan–Meier curves for relapse-free survival of acral and non-CSD melanoma patients. A, relapse-free survival time of acral melanoma patients with expression of both NUAK2 and p-Akt (S473) was dramatically shorter than acral melanoma patients with either NUAK2 or p-Akt (S473) alone (P = 0.002). B, relapse-free survival time of non-CSD melanoma patients with expression of both NUAK2 and p-Akt (S473) was not different from those of either NUAK2 or p-Akt (S473) alone (P = 0.721). Log-rank test was used to detect survival time differences among groups: (i) neither NUAK2 nor p-Akt (S473) positive; (ii) either NUAK2 or p-Akt (S473) positive; (iii) both NUAK2 and p-Akt (S473) positive. If we only compare groups 3 and 2 in acral melanomas, the P value is 0.003.

analyses led us to speculate that cooperation between both the NUAK2 and PI3K pathways is critical to tumorigenesis and that convergent points of those two pathways would be efficient targets to suppress the growth of NUAK2-amplified melanomas.

An initial study showed that NUAK2 participates in melanoma cell proliferation by controlling the cell cycle (12). A previous in vivo study using C32 melanoma cells with or without knockdown of NUAK2 showed that the tumor growth of C32 melanoma cells was significantly suppressed by knockdown of NUAK2 (12). In order to elucidate downstream pathways that connect NUAK2 to the cell-cycle machinery, we focused on examining the expression of genes in the mTOR, JNK, HIF, cadherin, and Rho-Rock pathways using a lentiviral vector examining the expression of genes in the mTOR, JNK, HIF, cadherin, and Rho-Rock pathways using a lentiviral vector containing shRNA targeting NUAK2 (shNUAK2; Supplementary Fig. S1A). Those analyses revealed that only mTOR is modulated by the knockdown of NUAK2 (12). For further detailed analyses, we used both NUAK2-amplified and PTEN-deficient melanoma cells as C32 melanoma cells (NUAK2: 3.94-fold) from non-CSD melanomas and SM2-1 melanoma cells (NUAK2: 2.12-fold) from acral melanomas, and we used mel18 melanoma cells.
without amplification of NUAK2 or deficiency of PTEN as a control from acral melanomas (Supplementary Table S2). We initially confirmed that knockdown of NUAK2 in both C32 melanoma cells and SM2-1 melanoma cells reduced cell numbers (Fig. 2A), and the S-phase population was reduced by modulating either the NUAK2 pathway, using shNUAK2, and/or the PI3K pathway, using LY294002 (Fig. 2B). Although the S-phase population of SM2-1 melanoma cells could be examined only by modulating the PI3K pathway using LY294002 due to massive apoptotic destruction of cells by modulating the NUAK2 pathway (Fig. 2C and Supplementary Fig. S4), we then proceeded to examine the expression of genes that control the cell-cycle machinery, such as CDK2, CDK4, CDK6, p21, and p27. Knockdown of NUAK2 by shNUAK2 downregulated the expression of CDK2 and upregulated the expression of p27. SM2-1 melanoma cells did not express both p21 and p27 (Fig. 3A). Inhibition of the PI3K pathway by LY294002 downregulated the expression of CDK2 and upregulated the expression of p21 (Fig. 3B). Immunohistochemical analysis of p21 expression also showed that inhibition of the PI3K pathway by LY294002 increased the percentage of p21-positive cells from 63.7% to 92.3% (Supplementary Fig. S5), and immunohistochemical analysis of the expression of p27 in clinical specimens showed that 86% (6 of 7 cases) of primary melanomas with high expression of both NUAK2 and p-Akt express p27 (Supplementary Table S3). Knockdown of PTEN by siPTEN slightly increased the expression of CDK2 in mel18 melanoma cells; however, the cell number was not affected (Fig. 3C and D). In addition, the NUAK2 and PI3K pathways were independently regulated by NUAK2 (Fig. 3E). From these observations, we speculated that both the NUAK2 and PI3K pathways control the expression of CDK2, increase the S-phase population in the cell-cycle profile, and increase the proliferation of both C32 and SM2-1 melanoma cells (Supplementary Fig. S6). Therefore, we hypothesized that CDK2 might be an efficient target to suppress the proliferation of NUAK2-amplified melanoma cells that are PI3K pathway activated.

Effects of CDK2 function on NUAK2-amplified melanoma cells

To examine the effect of CDK2 on the proliferation of NUAK2-amplified C32 and SM2-1 melanoma cells, we used...
siRNA SMARTpools targeting CDK2 (siCDK2), and used mel18 melanoma cells (without aberration of both NUAK2 and PTEN) as a control (Supplementary Table S2). After confirmation of the efficient knockdown by siCDK2 in both of those melanoma cell lines (Supplementary Fig. S7), we evaluated cell numbers at days 2 and 4. Knockdown of CDK2 dramatically reduced the number of C32 and SM2-1 melanoma cells at day 4, whereas knockdown of CDK2 had no effect on the number of mel18 melanoma cells (Fig. 4). Those results suggest that CDK2 preferentially participates in regulating the cell-cycle machinery in NUAK2-amplified C32 and SM2-1 melanoma cells. Immunohistochemical analyses also showed a high percentage (35 in 43 cases; 81.40%) of expression of CDK2 in both NUAK2 and p-Akt expressed melanomas (Supplementary Fig. S8 and Supplementary Table S1). Taken together, we postulated that CDK2 is a candidate target to inhibit the proliferation of NUAK2-amplified melanoma cells.

Effect of roscovitine on melanoma growth

To inhibit CDK2 activity, we evaluated the efficacy of a CDK inhibitor (roscovitine, also known as seliciclib and CYC202) that significantly inhibits CDK1 and CDK2 but not CDK4 or CDK6. The proliferation of C32 melanoma cells was inhibited 96.7% ($P = 0.011$) by 5 μmol/L roscovitine, whereas only an 18.8% decrease ($P = 0.008$) occurred in mel18 melanoma cells at the same dose of roscovitine (Fig. 5A). Similarly, roscovitine at 5 μmol/L significantly reduced the colony growth of C32 melanoma cells, compared with mel18 melanoma cells (Fig. 5B). Cell-cycle profile analyses showed that the S-phase population of C32 melanoma cells treated with roscovitine at 5 μmol/L was significantly reduced from 6.9% to 1.8% ($P < 0.001$), but 25 μmol/L roscovitine was required to achieve a similar effect on mel18 melanoma cells (Fig. 5C). In other cell lines with different NUAK2 and PTEN status, roscovitine had diverse effects, depending on the cell lines.
Inhibition of CDK2 Inhibits Melanoma Growth

Figure 5.
A CDK inhibitor targeting CDK2 effectively suppresses the cell proliferation of NUAK2-amplified melanomas. A, sensitivity of C32 and mel18 melanoma cells to roscovitine. Short-term cell number analyses showed that the growth of C32 cells is suppressed by roscovitine at a dose of 5 μmol/L or less. B, cell proliferation assay showed that the growth of C32 cells is efficiently suppressed by roscovitine at 5 μmol/L compared with a slight suppression of the growth of mel18 cells at the same dose. C, FACS analysis of the cell-cycle profile of C32 and mel18 melanoma cells treated with roscovitine at 0, 5, and 25 μmol/L. The S-phase population of C32 melanoma cells is significantly reduced by treatment with roscovitine at 5 μmol/L (top; n = 3, P < 0.001), but the S-phase population of mel18 melanoma cells is not changed by treatment of roscovitine at 5 μmol/L (bottom).

(Supplementary Fig. S9 and Supplementary Table S2). We then assessed the effects of roscovitine on the proliferation of C32, SM2-1, and mel18 melanoma cells in vivo using mice. Tumor growth was significantly suppressed in both C32 melanoma cells (P = 0.0053) and SM2-1 melanoma cells (P = 0.0101) compared with mel18 melanoma cells (P = 0.2136; Fig. 6). These in vitro and in vivo results indicate that treatment with a low dose of roscovitine effectively suppresses the growth of NUAK2-amplified melanoma cells.

Discussion
A wide variety of cancers have genomic aberrations of gains and/or amplification of the long arm of chromosome 1. In melanomas, several candidate genes have been speculated as oncogenes at the long arm of chromosome 1. Further, several cancer-related genes have been linked to copy-number increases of chromosome 1q, including SETDB1 and MDM4. Analyses of genomic aberrations at 1q in this study using array-CGH data identified a minimal region at 1q32, which is significantly related with tumor thickness in acral melanomas, and show that NUAK2 is a gene that promotes melanomagenesis at this locus. We cannot rule out the possibility that other genes participate in melanomagenesis in association with NUAK2 or alone at 1q32. However, either SETDB1 or MDM4 have quite a low possibility as the responsible gene at 1q32. SETDB1 resides at 1q21.3, which is far away from 1q32. SETDB1 has been identified as a gene related to BRAF mutation (V600E) (25), and a genome-wide association study showed that 1q21.3 is a novel melanoma susceptibility locus in an Australian cohort (26). Those two previous reports suggest that SETDB1 is a gene that participates in melanomagenesis in "non-CSD melanomas," not
that.

cells, and the results of our animal model study are consistent with
ciently suppress the proliferation of
of the cell proliferation assay indicate that roscovitine can ef
noma cells with
 targeting CDK2 in order to suppress the tumor growth of mela-
blotting, respectively. We selected “roscovitine” as an inhibitor
RNA and protein were estimated by real-time PCR and Western
obtained using three melanoma cell lines (C32, SM2-1, and
mel18), in which the genomic status of
both the knockdown of NUAK2 and
inactivation of the PI3K pathway by LY294002 suppress the
tumor growth of cancer cells. In
following facts:
possibility of
setDB1 cooperates
NUAK2 to confer tumorigenicity cannot be excluded,
because the long arm of chromosome 1 has two amplification
sites of cent-1q21 and 1q32 in melanoma cells. However, the
possibility that SETDB1 is an acral melanoma oncogene at 1q32
is quite low. Regarding MDM4, our immunohistochemical
studies showed that the possibility of MDM4 as the responsible
gene at 1q32 was excluded. Although our initial studies exploring
MDM4 as an acral melanoma oncogene from the CGH array
data and real-time PCR data revealed the possibility of MDM4 as
an oncogene at this locus, our intensive studies using the
possibility of MDM4 as an oncogene by clear IHC data because
the expression of MDM4 did not correlate with tumor thickness
in clinical specimens of acral melanomas. MDM4 has been
speculated to participate in melanomagenesis, particularly in
non-CSD melanomas. A previous study of MDM4 expression
in melanomas showed almost identical data to our IHC data (27).
Thus, MDM4 can be excluded as an acral melanoma oncogene at the
1q32 locus.

Control of the cell-cycle machinery has a critical role in regu-
larizing cell proliferation and tumor growth of cancer cells. In
melanomas, genomic aberrations of melanoma cells have differ-
ent impacts on the regulation of cell-cycle machinery by CDKs
such as that CDK4 is a key driver in NRAS-mutant melanomas and
that CDK2 has a pivotal role in melanomas with high expression
of MITF (18–20). This study showed that NUAK2 controls CDKs in
melanoma cells, and that both the knockdown of NUAK2 and
inactivation of the PI3K pathway by LY294002 suppress the
expression of CDK2. In addition, knockdown of CDK2 using
siCDK2 efficiently reduced the cell number. Those results were
obtained using three melanoma cell lines (C32, SM2-1, and
mel18), in which the genomic status of NUAK2 and PTEN was
estimated using real-time PCR, and expression levels of either
mRNA and protein were estimated by real-time PCR and Western
blotting, respectively. We selected “roscovitine” as an inhibitor
targeting CDK2 in order to suppress the tumor growth of mel-
noma cells with NUAK2 amplification. Although roscovitine has
an ability to inhibit several CDKs in addition to CDK2, the results
of the cell proliferation assay indicate that roscovitine can ef-
ciently suppress the proliferation of NUAK2-amplified melanoma
cells, and the results of our animal model study are consistent with
that.

In summary, this study demonstrates that CDK2 is an effective
molecular target for the treatment of NUAK2-amplified melano-
mas. The inhibition of CDK2 by roscovitine is a rational approach
to reduce cell proliferation and to delay tumor growth, and
provides a new therapeutic approach for the treatment of cuta-
neous melanomas.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors' Contributions
Conception and design: T. Namiki, T. Yaguchi, Y. Kaneko, Y. Kawakami,
V.J. Hearing
Development of methodology: T. Yaguchi, J.C. Valencia, M. Kawaguchi,
W.D. Vieira
Acquisition of data (provided animals, acquired and managed patients,
provided facilities, etc.): T. Namiki, T. Yaguchi, K. Nakamura, J.C. Valencia,
S.G. Coelho, Y. Kaneko, A. Tanemura, I. Katayama
Analysis and interpretation of data (e.g., statistical analysis, biostatistics,
computational analysis): T. Namiki, T. Yaguchi, J.C. Valencia, L. Yin,
M. Kawaguchi, W.D. Vieira, Y. Kaneko, I. Katayama
Writing, review, and/or revision of the manuscript: T. Namiki, T. Yaguchi,
Administrative, technical, or material support (i.e., reporting or organizing
data, constructing databases): T. Namiki, T. Yaguchi, K. Nakamura, W.D. Vieira
Study supervision: H. Yokozeki, Y. Kawakami, V.J. Hearing
Other (grant support): Y. Kawakami

Acknowledgments
The authors thank Drs. Murata H and Okuyama R (Shinshu University) for
providing the SM2-1 melanoma cell.

Grant Support
This work was supported in part by the Intramural Research Program (ZIA
BC 010785) of the National Cancer Institute at NIH and Grants-in-Aid for
Scientific Research (26221005) from the Japan Society for Promotion of
Science.

The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked
advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate
this fact.

Received November 11, 2013; revised December 3, 2014; accepted March 1,
2015; published OnlineFirst April 1, 2015.
References

Inhibition of CDK2 Inhibits Melanoma Growth

www.aacjrournals.org Cancer Res; 75(13) July 1, 2015

Published OnlineFirst April 1, 2015; DOI: 10.1158/0008-5472.CAN-13-3209
NUAK2 Amplification Coupled with PTEN Deficiency Promotes Melanoma Development via CDK Activation

Takeshi Namiki, Tomonori Yaguchi, Kenta Nakamura, et al.

Cancer Res 2015;75:2708-2715. Published OnlineFirst April 1, 2015.

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-13-3209

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2015/03/31/0008-5472.CAN-13-3209.DC1

Cited articles
This article cites 27 articles, 4 of which you can access for free at: http://cancerres.aacrjournals.org/content/75/13/2708.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/75/13/2708.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/75/13/2708. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.