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Abstract

Malignant progression results from a dynamic cross-talk
between stromal and cancer cells. Recent evidence suggests that
this cross-talk is mediated to a signi�cant extent by exosomes,
nanovesicles secreted by most cell types and which allow the
transfer of proteins, lipids, and nucleic acids between cells. Adi-
pocytes are a major component of several tumor microenviron-
ments, including that of invasive melanoma, where cells have
migrated to the adipocyte-rich hypodermic layer of the skin. We
show that adipocytes secrete exosomes in abundance, which are
then taken up by tumor cells, leading to increased migration and
invasion. Using mass spectrometry, we analyzed the proteome of

adipocyte exosomes. Interestingly, these vesicles carry proteins
implicated in fatty acid oxidation (FAO), a feature highly speci�c
to adipocyte exosomes. We further show that, in the presence of
adipocyte exosomes, FAO is increased in melanoma cells. Inhi-
bition of this metabolic pathway completely abrogates the exo-
some-mediated increase in migration. Moreover, in obese mice
and humans, both the number of exosomes secreted by adipo-
cytes as well as their effect on FAO-dependent cell migration are
ampli�ed. These observations might in part explain why obese
melanoma patients have a poorer prognosis than their nonobese
counterparts. Cancer Res; 76(14); 4051–7. �2016 AACR.

Introduction
Among the cells found in tumor microenvironments, adipo-

cytes, the main cellular components of adipose tissue (AT), can
promote tumor progression (1, 2). Understanding their role in
cancer, particularly in obesity, is of major clinical importance as
obesity affects cancer occurrence and prognosis (2). Research into
the communication between adipocytes and tumor cells has been
limited to soluble factors, such as leptin or proin�ammatory
cytokines (2), although emerging evidence suggests that exosomes
also play a role in cell–cell communication. Exosomes are nano-
vesicles secreted by most cell types. Tumor cell–derived exosomes
are implicated in tumor progression through various mechanisms,
such as immune evasion, proliferation, invasion, or metastatic

niche preparation (3). "Normal" cells in the tumor microenvi-
ronment also secrete exosomes (4, 5). However, the role of
adipocyte exosomes (ad-exos) in tumor progression has not yet
been studied. Subcutaneous adipocytes are the main component
of the hypodermis, and adipocyte secretions may promote mel-
anoma aggressiveness by stimulating cell growth (6) and/or
invasion (7). Obesity is associated with an increased risk of
developing melanoma as well as malignant progression (8, 9).
In obesity, adipose tissue is submitted to stress such as in�am-
mation that is known, in other cells, to modify exosomes and
consequently their activity on recipient cells (10). Few studies have
focused on ad-exos in obesity, although their function and content
are modi�ed. For instance, they are implicated in insulin resistance
(11) and their miRNAs mediate in�ammation and �brosis (12).

We show here that ad-exos stimulate melanoma cell migration
and invasion. These exosomes, speci�cally enriched in proteins
implicated in fatty acid oxidation (FAO), induce a metabolic
reprogramming in tumor cells in favor of FAO, promoting aggres-
siveness. In obesity, both the number of exosomes secreted as well
as their effect on tumor cell migration is increased, thus contrib-
uting to the ampli�cation of the deleterious dialog between
adipocytes and cancer cells.

Materials and Methods
Suppliers and antibodies are available in Supplementary

Materials and Methods.

Cell lines and treatment
The murine 3T3-F442A preadipocyte line (obtained and

authenticated from ATCC in 2014) was differentiated into

1Institut de Pharmacologie et de Biologie Structurale, Universit�e de
Toulouse, CNRS, UPS, Toulouse, France. 2Institut des Maladies
M�etaboliques et Cardiovasculaires, Universit�e de Toulouse, INSERM
U1048, UPS, Toulouse, France. 3Plateforme de Microscopie Electro-
nique Int�egrative, CNRS, Universit�e de Toulouse, Toulouse, France.
4Centre de recherche en Canc�erologie de Lyon, Universit�e Lyon 1,
Pierre B�enite, France.

Note: Supplementary data for this article are available at Cancer Research
Online (http://cancerres.aacrjournals.org/).

I. Lazar and E. Clement contributed equally to this article.

Corresponding Author: Laurence Nieto, IPBS CNRS UMR5089/University of
Toulouse, 205 Route de Narbonne, Toulouse 31077, France. Phone: 335-6117-
5509; Fax: 3305-6117-5994; E-mail: Laurence.Nieto@ipbs.fr

doi: 10.1158/0008-5472.CAN-16-0651

�2016 American Association for Cancer Research.

Cancer
Research

www.aacrjournals.org 4051



adipocytes as described previously (1). Melanoma line char-
acteristics and conditions of culture are described in Supple-
mentary Materials and Methods. They were obtained and
authenticated from L. Larue (Institut Curie, Orsay, France) in
2013 and passaged for fewer than 2 months after receipt
or resuscitation. Cells (1 � 105) were treated with exosomes
(5 � 1010 per well) for 48 hours. When indicated, etomoxir
(50 mmol/L) or trimetazidine (1 mmol/L) were added 24 hours
after exosomes. Actin was stained with phalloidin as described
previously (13).

Animals and primary cell isolation
Mice were handled in accordance with National Institute

of Medical Research (INSERM) guidelines. Experiments
were approved by the local committee on ethics of animal
experimentation. Eight-week-old C57BL/6J male mice were
fed a normal or high fat diet as described in Supplemen-
tary Materials and Methods. Adipocytes and SVF cells were
isolated from adipose tissue as described previously (14). A
total of 1 � 106 cells/mL was incubated to condition
medium.

For tail vein metastasis assays, female nude athymic mice
were intravenously injected with 5 � 105 GFP-expressing
SKMEL28 cells treated or not with ad-exos. Seven weeks later,
mice were sacri�ced and lungs excised, �xed in 4% parafor-
maldehyde for 24 hours, dehydrated, and embedded in paraf-
�n. Sections (10 mm) were cut and rehydrated before counting
GFP-positive micrometastases using an Axio Imager M2 micro-
scope (Zeiss).

Preparation of human adipose tissue samples
Human adipose tissue samples were collected from abdom-

inal dermolipectomies in accordance with the recommenda-
tions of the ethics committee of the Toulouse Hospital (Tou-
louse, France). Patients gave their consent in accordance with
the Declaration of Helsinki Principles as revised in 2000.
Tissues were processed within 30 minutes of surgical resection.
Adipose tissue was separated from skin, large blood vessels,
glandular tissue and fascia, weighed, cut into 1 cm3 pieces, and
incubated to condition medium (4 mL/g of tissue). The age,
sex, and body mass index (BMI) were available for all patients.
Samples were separated into three groups of 8 patients: lean
(BMI < 25 kg/m2; mean BMI ¼ 22.3 � 2.1; mean age ¼ 55.7 �
7.5), overweight (BMI, 25–29.9 kg/m2; mean BMI ¼ 27.5 � 1.6;
mean age ¼ 43.9 � 5.8), and obese (BMI � 30 kg/m2; mean
BMI ¼ 32.2 � 2.3; mean age ¼ 49.5 � 5.6).

Exosome preparation and analysis
Cells were incubated in DMEM supplemented with 10% FCS

depleted of vesicles by overnight centrifugation (100,000 � g).
Lines and primary cells and tissues were respectively incubated for
48 and 24 hours. Exosome puri�cation, density, number and size
distribution analysis, and uptake monitoring were performed as
described previously (13).

Transmission electron microscopy
Specimens were prepared as described previously (13). Mito-

chondria were quanti�ed by counting the number per picture on
at least 50 pictures per experiment (an average of 20 mitochondria
per picture).

Migration and invasion assays
Cells were assessed in Boyden chamber assays as described in

Supplementary Materials and Methods.

Nano-LC/MS-MS analysis
Proteins (50 mg) were identi�ed using Nano-LC/MS-MS and

analyzed as described in Supplementary Materials and Methods.

Western blotting analysis
Cells or exosomes were lysed in PBS 1% SDS. Proteins (1 mg)

were electrophoresed on SDS-PAGE. Western blotting analyses
were performed as described previously (13).

Measurement of FAO
Cells were incubated for 3 hours with [1-14C]palmitate or

[U-14C]D-glucose (1 mCi/mL). Following incubation, 14CO2 was
extracted, measured by liquid scintillation (LS 6500; Beckman
Coulter), and normalized as described previously (15).

Statistical analysis
Values are means � SEM. The statistical signi�cance of results

(at least three independent assays) was evaluated using Student
t tests. �, P < 0.05; ��, P < 0.01; and ���, P < 0.001 were deemed as
signi�cant (ns, nonsigni�cant).

Results
Adipocytes secrete exosomes that are taken up by tumors and
promote aggressiveness

Exosomes were puri�ed from the conditioned medium of
3T3-F442A mature adipocytes. The isolated particles display the
typical morphology, density, and size of exosomes and contain
ALIX, TSG101, and �otillin-1 (FLOT1), all of which being hall-
marks of exosomes (Fig. 1A; ref. 16). Mature adipocytes exhibit
high rates of exosome shedding. Indeed, they secrete much more
exosomes than melanoma cells, which are known to secrete many
vesicles (Fig. 1B; ref. 17). Exposure of melanoma cell lines,
SKMEL28 and 1205Lu, to DiD-labeled ad-exos resulted in a
punctate �uorescence in cells, indicating exosome internalization
(Fig. 1C). Melanoma cells treated with ad-exos exhibited an
elongated morphology with actin-rich membrane protrusions,
consistent with an increase in cell migration (Fig. 1C). Indeed,
ad-exos signi�cantly increased melanoma cell migration and
invasion, whereas proliferation was not affected (Fig. 1D and
Supplementary Fig. S1). Moreover, melanoma cells incubated
with ad-exos induced increased lung colonization in immuno-
de�cient mice when compared with control cells (Fig. 1D).
Interestingly, exosome secretion progressively increased during
adipocyte differentiation (Supplementary Fig. S2A), and preadi-
pocyte-derived exosomes failed to promote migration (Supple-
mentary Fig. S2B), showing the speci�c effect of mature ad-exos.
The effect of ad-exos was not restricted to melanoma, as it was also
seen in a prostate cancer model (Supplementary Fig. S3). Overall,
these results show that ad-exos enhance tumor cell aggressiveness,
highlighting a new mode of communication between adipocytes
and cancer cells.

Ad-exos promote cancer cell migration through metabolic
reprogramming

To decipher the mechanisms responsible for the promigratory
effect of ad-exos, we analyzed their protein content by mass
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spectrometry (Supplementary Fig. S4A; Supplementary Table).
Among the proteins identi�ed, all common exosomal markers
were present (Supplementary Fig. S4B). When classi�ed depending
on their function, the most represented cellular process associated
with ad-exo proteins was "metabolism and transporters" (Fig. 2A).
This protein signature is speci�c to ad-exos as exosomal proteins are
usually predominantly associated with "vesicular traf�cking" (13).
Moreover, 53% of the proteins implicated in metabolism had never

been identi�ed in exosomes from other cells. In contrast, more than
90% of proteins implicated in "vesicular traf�cking" had previously
been identi�ed in exosomes (Fig. 2A, top). The majority of proteins
implicated in cell metabolism were found to be involved in lipid
metabolism, a trait highly speci�c to ad-exos (Fig. 2A, bottom).
Among them, we identi�ed a large number of proteins involved in
FAO (Fig. 2B), including ECHA (a subunit of the trifunctional
enzyme) and HCDH (hydroxyacyl-coenzyme A dehydrogenase).
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Figure 1.
Adipocytes secrete exosomes that promote melanoma migration and invasion. A, left, 3T3-F442A ad-exos viewed by electron microscopy (scale bar, 200 nm);
right, ad-exos isolated on a sucrose density gradient analyzed by silver staining or Western blotting. d, density. B, NanoSight analysis of exosomes isolated
from 3T3-F442A or melanoma cell–conditioned medium. One representative analysis for each line is shown. C, labeled ad-exos (red) were incubated with the
indicated melanoma cells. Actin was stained using phalloidin (green; scale bar, 20 mm). D, left and middle, migration or invasion assays of melanoma lines
incubated or not with ad-exos; right, number of lung metastases per mouse intravenously injected with GFP-SKMEL28 cells treated or not with ad-exos
(control, n ¼ 9; ad-exos, n ¼ 8). � , P < 0.05; �� , P < 0.01; ��� , P < 0.001.

Adipocyte Exosomes: A New Link between Obesity and Cancer

www.aacrjournals.org Cancer Res; 76(14) July 15, 2016 4053



We veri�ed by Western blot analysis the presence of these proteins
in exosomes from 3T3-F442A adipocytes, whereas they were unde-
tectable in those from preadipocytes. Interestingly, they were barely
detectable in the exosomes secreted by melanoma cells, although
these cells expressed them at levels comparable with adipocytes
(Fig. 2C), highlighting their speci�c addressing to ad-exos. ECHA
and HCDH were also present in murine and human primary ad-
exos (Fig. 2C, bottom).

We hypothesized that, through the transfer of functional
enzymes, ad-exos might induce a metabolic reprogramming in
favor of FAO in recipient cells. In favor of this hypothesis,
SKMEL28 cells treated with ad-exos presented increased levels of
ECHA and HCDH proteins, with no difference in the correspond-
ing mRNA levels (Supplementary Fig. S5). Moreover, FAO was
increased in SKMEL28 cells incubated with ad-exos, while glucose
oxidation and lactate release were unchanged, indicating that
glycolysis was not impacted by this treatment (Fig. 3A and
Supplementary Fig. S6). This metabolic reprogramming was also
associated with an increase in mitochondria number and density
in melanoma (Fig. 3B) and prostate tumor cells (Supplemen-

tary Fig. S7A) cells, suggesting enhanced respiratory chain
activity (18). To evaluate the impact of FAO on ad-exos–
induced cell migration, two FAO inhibitors, etomoxir and
trimetazidine, were used (targets shown in Fig. 2B). Although
neither inhibitor affected basal tumor cell migration, a com-
plete reversion of the promigratory effect of ad-exos was
observed in recipient tumor cells (Fig. 3C and Supplementary
Fig. S7B), demonstrating the implication of FAO in this process.
FAO inhibitors induced a reversion of the ad-exos–mediated
actin cytoskeleton remodeling (Fig. 3D), further supporting the
link between FAO and migration.

In obesity, the effect of ad-exos is increased
We therefore tested whether ad-exos from obese individuals

exhibit an increased activity on tumor cells. Exosomes secreted
by subcutaneous or visceral adipocytes from lean and obese
mice were puri�ed (Supplementary Fig. S8A). Interestingly, the
number of exosomes shed by adipocytes from obese mice was
higher than that from lean animals (Fig. 4A, left; Supplementary
Fig. S8B). However, this increase was not observed for other cells
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found in adipose tissue (referred to as "stromal vascular fraction"
or SVF). Remarkably, cancer cell migration was increased after
incubation with equal concentrations of ad-exos isolated from
obese mice compared with those isolated from lean mice, whereas
this effect was not observed for the SVF (Fig. 4A and Supplemen-
tary Fig. S8C). We con�rmed these �ndings using human adipose
tissue from individuals with varying BMIs. Indeed, there was a
positive correlation between adipose tissue exosome shedding
and BMI (Fig. 4B, left). Moreover, when used at equal concentra-
tions, exosomes from overweight and obese individuals gradually
increased melanoma migration compared with exosomes from
lean individuals (Fig. 4B, right). Finally, in both lean and obese
conditions, inhibition of FAO reversed the effect of ad-exos,

showing that FAO is involved in the obesity-associated exacer-
bation of this deleterious metabolic reprogramming (Fig. 4C).
Overall, these �ndings show that ad-exos are modi�ed in a
quantitative and qualitative manner in obesity. Indeed, not only
is the number of exosomes secreted per cell increased, but so is
their effect on cell migration when equal concentrations were
used. These modi�cations might well work in synergy in obese
patients, favoring tumor cell migration to an even higher extent.

Discussion
Emerging studies indicate that a cross-talk exists between

adipocytes and cancer cells (1). This dialog entails a vicious circle,
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Ad-exos promote melanoma migration
through metabolic reprogramming.
Melanoma lines were incubated or not
with ad-exos. A, 14C palmitate (left) and
14C glucose (right) oxidation analysis in
SKMEL28 cells. ns, nonsignificant. B, left,
representative transmission electron
micrograph of mitochondria (�) in
melanoma cells (scale bar, 500 nm);
right, quantification of these organelles.
C and D, when indicated, etomoxir and
trimetazidine were added. C, migration
assays. D, actin staining (green) using
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where cancer cells activate adipocytes, which, in turn, promote
tumor progression. The study of this dialog has, until now,
been limited to soluble factors, despite increasing evidence for
an important role for stromal cell exosomes on tumor progres-
sion. For example, it has been shown that exosomes from
cancer-associated �broblasts promote breast cancer cell motil-
ity through Wnt/planar cell polarity signaling (19). Here, we
show the importance of ad-exos in malignant progression.
Indeed, ad-exos are key players in a metabolic dialog between
adipocytes and cancer cells, not only in melanoma but also in
prostate cancer, suggesting that their effect on tumor progres-
sion is more general. Recent results have shown that exosomes
shed by pancreatic cancer cells induce lipolysis in subcutaneous
adipose tissue (20), indicating a role for exosomes in both
directions of the cross-talk between adipocytes and cancer cells.
Our study reveals the involvement of FAO in the increased
tumor cell migration induced by ad-exos. In accordance with

our proteomic analysis, previous studies have identi�ed reg-
ulators of lipid metabolism, including FAO enzymes, in ad-
exos, although none have addressed their functional impact in
recipient cells (21, 22). The importance of FAO in tumor
progression has recently been highlighted (23). Advanced mel-
anomas show upregulation of FAO genes, highlighting that this
pathway could be key to melanoma progression (24). Finally,
ad-exos secretion and activity is ampli�ed in obesity, which
could explain, at least in part, the poor prognosis observed for
this subset of cancer patients (2). Pharmacologic inhibition of
FAO totally reverses the effect of ad-exos on tumor cell migra-
tion in obesity (Fig. 4C). However, the actors responsible for
this effect remain unidenti�ed. Preliminary experiments show
that ECHA and HCDH are not enriched in ad-exos from obese
mice (data not shown). In addition to the increased level of
other FAO proteins, the role of fatty acids is an interesting
alternative hypothesis since, as ad-exos contain free fatty acids
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(11) and as adipocytes contain more lipids in obesity, the
exosomes they secrete may be enriched in fatty acids, known
positive regulators of FAO (25).

We anticipate that our �ndings could contribute to the devel-
opment of new strategies for cancer treatment involving FAO
inhibitors, especially for the treatment of obese individuals. Such
molecules, as trimetazidine, are currently used in the context of
other diseases, such as angina pectoris (23).
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