Upregulated Glucose Metabolism Correlates Inversely with CD8\(^+\) T-cell Infiltration and Survival in Squamous Cell Carcinoma

Christian H. Ottensmeier\(^1\), Kate L. Perry\(^1\), Elena L. Harden\(^1\), Jana Stasakova\(^1\), Veronika Jenei\(^1\), Jason Fleming\(^1\), Oliver Wood\(^1\), Jeongmin Woo\(^2\), Christopher H. Woelk\(^2\), Gareth J. Thomas\(^1\), and Stephen M. Thirdborough\(^1\)

Abstract

Antibodies that block T-cell–regulatory checkpoints have recently emerged as a transformative approach to cancer treatment. However, the clinical efficacy of checkpoint blockade depends upon inherent tumor immunogenicity, with variation in infiltrating T cells contributing to differences in objective response rates. Here, we sought to understand the molecular correlates of tumor-infiltrating lymphocytes (TIL) in squamous cell carcinoma (SCC), using a systems biologic approach to integrate publicly available omics datasets with histopathologic features. We provide evidence that links TIL abundance and therapeutic outcome to the regulation of tumor glycolysis by EGFR and HIF, both of which are attractive molecular targets for use in combination with immunotherapeutics. Cancer Res; 76(14); 4136–48. ©2016 AACR.

Introduction

The unprecedented success of antibodies against CTLA-4 and PD-1/PD-L1 has changed the landscape of cancer treatment (1). These mAbs disrupt key molecular regulators on T cells and boost antitumor immunity through the blockade of inhibitory signals (1). Unfortunately, only about a third of patients respond to checkpoint-blocking antibodies, and currently there is no reliable way of identifying individuals most likely to benefit from immunotherapy.

Clinical trials of antibodies targeting the PD-1 pathway have demonstrated efficacy in tumors characterized by high TIL infiltration and expression of PD-L1 (2, 3), arguing that the clinical activity of checkpoint blockers is likely dependent on the presence of preexisting T-cell responses subject to dominant immunosuppression. Numerous studies have reported that TIL frequency predicts for outcome (4), and we recently showed that this is true also for HPV-associated head and neck squamous cell carcinomas (HNSCC; ref. 5). Approximately 85% of HPV-positive HNSCCs contain a significant T-cell infiltrate, suggesting that this tumor type is particularly immunologically visible. Unlike HPV-positive HNSCCs, most solid tumors contain widely varying levels of TILs and many immune escape mechanisms have been posulated to contribute to this. These include lack of chemokine-mediated trafficking (6), poor innate immune cell activation (7), and the presence of specific immunosuppressive populations, such as Foxp3\(^+\) regulatory T cells and myeloid-derived suppressor cells (8, 9).

To provide an unbiased global view of the underlying molecular processes that contribute to TIL frequency, we carried out a systems biologic analysis of SCC data in The Cancer Genome Atlas (TCGA), involving weighted gene coexpression network analysis (WGCNA; ref. 10). Network analysis enables extraction of cell type–specific information from whole tissue while providing a system-level view and giving some insight into the communication between tumor, stroma, and the host immune response. The power of WGCNA in capturing a systems perspective is built upon its underlying algorithm, which takes into account not only the correlation of two genes with each other but also the degree of similarity between a pair of genes in their correlation structure within the rest of the network (11). This strategy, applied to the analysis of SCC, identified inverse correlates of TIL infiltration that are associated with the natural evolution of cancer, encompassing genomic alterations and dysregulated signaling pathways that culminate in stabilization of HIF and elevated tumor glycolysis.

Materials and Methods

WGCNA

Raw read counts from SCC datasets, originating from head and neck, esophageal, cervical, and lung tissues, were imported from TCGA into edgeR (12) and normalized using the limma-voom algorithm (13). Outlier subjects were identified and excluded using a sample network connectivity statistic described previously (14). WGCNA was performed on these preprocessed datasets, using the WGCNA package in R (10, 15). Networks were graphically depicted by exporting topologic overlap weights into Gephi.
Survival analyses

The relationship between gene sets and patient survival outcomes was analyzed using Cox proportional hazards (PH) models. Specifically, patients were dichotomized according to high and low mean gene expression using cutoffs with a maximally selected log-rank statistic (Maxstat R function). Kaplan–Meier survival curves derived from the Cox PH model were then generated and differences between the two groups compared using the R survival package.

IHC

Tissue microarrays were constructed using triplicate, randomly selected, paraffin-embedded 1-mm tumor cores (Aphelys Minicore 2, Mitogen). Automated immunostaining (Ventana XT) was performed by an accredited clinical pathology department using mAbs against CD3, CD8 (Leica Microsystems), EGFR (Dako), GLUT-1, and HIF-1α (Abcam). TILs were quantified using a Zeiss AxioCam MRc5 microscope and Zeiss Axiovision software (v4.8-1.0). An average intratumoral TIL score/high-power field was calculated across representative areas of each triplicate core. We have shown previously in this patient cohort that randomly selected triplicate TMA cores accurately reflect the heterogeneity of TIL infiltration within the tumor, and that TMA cell counts significantly correlate with whole-section TIL levels (5).

Cell culture and reagents

The TC-1 cell line, derived from transformed primary lung epithelial cells of C57BL/6 mice, and Phoenix Ecotropic cells were obtained from ATCC during 2011 and 2012, respectively. Cells were authenticated by mapping RNA-Seq reads to HPV genomes (16). After data preprocessing and outlier removal, a similarity matrix was built from pairwise correlations between gene expressions for the 4,000 most connected genes, ranked by the row sum of the adjacency matrix. Within this correlation matrix, 12 modules of highly coexpressed genes were identified by unsupervised hierarchical clustering on the basis of topologic overlap (Fig. 1A). The chosen module reliably detects gene sets whose expression positively correlates with low TIL abundance, we applied WGCNA to a HNSCC RNA-Seq dataset (16), publicly available via TCGA (Supplementary Fig. S1 provides an overview of the approach used in this study). The cohort analyzed consisted of tumors primarily from the oral cavity, larynx, and oropharynx, and included both HPV-positive (n = 34) and HPV-negative (n = 212) cases. HPV status was defined by mapping RNA-Seq reads to HPV genomes (16). After data preprocessing and outlier removal, a signed similarity matrix was built from pairwise correlations between gene expressions for the 4,000 most connected genes, ranked by the row sum of the adjacency matrix. Within this correlation matrix, 12 modules of highly coexpressed genes were identified by unsupervised hierarchical clustering on the basis of topologic overlap (Fig. 1A). An index.html file that allows the network to be viewed and searched in a browser can be obtained from https://www.dropbox.com/sh/67iyyzz2wwn49pg/AAAB11chH9LYfcKhQI6HmMxa?dl=0.

To establish whether the gene coexpression modules reflect distinct biologic processes, Gene Ontology (GO) analyses were conducted in TopGene (https://toppgene.cchmc.org/). All but one of the 12 modules had significant enrichment for at least one GO category, including processes linked to cancer such as M6 “cell cycle,” M3 “extracellular matrix organization,” and pertinent to our study, M11 “leukocyte activation” and M8 “regulation of immune system process” (Supplementary Table S1). A full list of GO categories is provided in Supplementary Table S2.

To determine whether the network was reproducible across datasets, we evaluated whether module density and connectivity patterns defined in the RNA-Seq data were preserved in two independent HNSCC cohorts (ETABM-302, www.ebi.ac.uk/arrayexpress; http://bioinformatics.pirc.man.ac.uk/vice/Public-Project-vice?pid=361; refs. 17, 18). Of the 4,000 genes used to construct the aforementioned network, 3,557 (88.9%) were also present in the array data. Using network module preservation

Tumor therapy experiments

Female C57Bl/6 mice aged 6–8 weeks were injected subcutaneously with 5 × 10⁵ TC-1 cells transfected with pMSCV-puro or pMSCV-GLUT-1-puro into the dorsal flank. After 3 days, animals were subdivided into two further experimental groups, immunized with empty vector or an E7/E6-encoding DNA vaccine, and tumor growth was followed over 3 weeks. Tumor volume was determined using the ellipsoidal volume formula: \(\frac{4}{3} \pi \times length \times width^2 \). All animal experiments were performed according to UK Home Office guidelines (license number PPL 30/3028).

Statistical analysis

To assess differential gene expression between patient groups, either the nonparametric Wilcoxon signed-rank test or the Kruskal–Wallis test (for comparisons involving more than two groups) was performed. To correlate module eigengenes with binary traits, output P values were –log10 transformed and given a sign according to whether the average rank was higher in the second (positive) or first (negative) group. These gene significance values were then correlated with the kME measure.

Results

The HNSCC transcriptome is organized into consistent modules of coexpressed genes, which correspond to distinct biologic processes

To identify gene signatures whose expression positively correlates with low TIL abundance, we applied WGCNA to a HNSCC RNA-Seq dataset (16), publicly available via TCGA (Supplementary Fig. S1 provides an overview of the approach used in this study). The cohort analyzed consisted of tumors primarily from the oral cavity, larynx, and oropharynx, and included both HPV-positive (n = 34) and HPV-negative (n = 212) cases. HPV status was defined by mapping RNA-Seq reads to HPV genomes (16). After data preprocessing and outlier removal, a signed similarity matrix was built from pairwise correlations between gene expressions for the 4,000 most connected genes, ranked by the row sum of the adjacency matrix. Within this correlation matrix, 12 modules of highly coexpressed genes were identified by unsupervised hierarchical clustering on the basis of topologic overlap (Fig. 1A). The chosen module reliably detects gene sets whose expression positively correlates with low TIL abundance, we applied WGCNA to a HNSCC RNA-Seq dataset (16), publicly available via TCGA (Supplementary Fig. S1 provides an overview of the approach used in this study). The cohort analyzed consisted of tumors primarily from the oral cavity, larynx, and oropharynx, and included both HPV-positive (n = 34) and HPV-negative (n = 212) cases. HPV status was defined by mapping RNA-Seq reads to HPV genomes (16). After data preprocessing and outlier removal, a signed similarity matrix was built from pairwise correlations between gene expressions for the 4,000 most connected genes, ranked by the row sum of the adjacency matrix. Within this correlation matrix, 12 modules of highly coexpressed genes were identified by unsupervised hierarchical clustering on the basis of topologic overlap (Fig. 1A). An index.html file that allows the network to be viewed and searched in a browser can be obtained from https://www.dropbox.com/sh/67iyyzz2wwn49pg/AAAB11chH9LYfcKhQI6HmMxa?dl=0.

To establish whether the gene coexpression modules reflect distinct biologic processes, Gene Ontology (GO) analyses were conducted in TopGene (https://toppgene.cchmc.org/). All but one of the 12 modules had significant enrichment for at least one GO category, including processes linked to cancer such as M6 “cell cycle,” M3 “extracellular matrix organization,” and pertinent to our study, M11 “leukocyte activation” and M8 “regulation of immune system process” (Supplementary Table S1). A full list of GO categories is provided in Supplementary Table S2.

To determine whether the network was reproducible across datasets, we evaluated whether module density and connectivity patterns defined in the RNA-Seq data were preserved in two independent HNSCC cohorts (ETABM-302, www.ebi.ac.uk/arrayexpress; http://bioinformatics.pirc.man.ac.uk/vice/Public-Project-vice?pid=361; refs. 17, 18). Of the 4,000 genes used to construct the aforementioned network, 3,557 (88.9%) were also present in the array data. Using network module preservation
Figure 1.
Gene coexpression and eigengene relationships with HNSCC transcriptional subclasses and clinicopathologic features. A, hierarchical clustering dendrogram for all 4,000 genes used in the analysis. The color row underneath the dendrogram shows the module assignment. B, network graph where each node represents a gene labeled by color according to the module assignment in A. Distance between nodes is represented by the topologic overlap connectivity measure. C-F, network graphs where each gene is labeled by color according to correlation with the indicated HNSCC tumor subtype. Red and blue colors show positive and negative correlation, respectively. G, heatmap of the correlation between expression of each ME and the clinical trait listed. ECS, extracapsular spread; LVI, lymphovascular invasion; PNI, perinuclear invasion.
Coexpression modules are significantly associated with HNSCC biomarkers

To study the relationships among identified modules and clinical variables, we summarized the expression profile of each module by its first principal component, termed the module eigengene (ME; ref. 10), and correlated MEs with clinical traits and genetic alterations (Fig. 1G). This analysis highlighted modules associated with known HNSCC biomarkers, including histopathologic grade and TIL frequency, as well as HPV status and genetic alterations (Fig. 1G). Five modules (M3, M8, M11, M12, and border of M1) formed a network sub region (“meta-module”) associated with mesenchymal tumors (Fig. 1C), which are defined by the expression of genes linked with EMT and/or containing fibroblasts with a strong desmoplastic response (20). In contrast, the basal subtype, which typically exhibit EGFR and MYC gene amplification (21) and include tumors with HRAS-CASP8 comutation (16), centered around modules M2 and M4 (Fig. 1D). The remaining subtypes were associated with two further network regions, encompassing module M9 (classical, Fig. 1E) and modules M6, M5 and M1 (atypical, Fig. 1F). The classical subtype typically exhibits deletion of 3p and 9p, and amplification of 3q, whereas an enrichment of HPV-positive tumors and a lack of EGFR amplification or deletion of 9p characterize the atypical subtype (16, 21).

The interferon signaling pathway is associated with chronically activated CD8+ T cells in HNSCC

To further characterize the CD8+ T-cell population, we tested whether the kME greater than 0.8 gene set was enriched in the transcriptome of memory, effector, and exhausted CD8+ T cells as defined by Wherry and colleagues in a model of acute versus chronic infection (GSEA41867; ref. 26). GSEA revealed that the genes were significantly over-represented in effector (day 15) CD8+ T cells, responding to chronic (Fig. 3A) as opposed to acute LCMV infection (Fig. 3B). In this late anti-LCMV effector response, differentially expressed genes are exhaustion biased and reflect prolonged IFN signaling (27). To examine whether this relationship extends to TILs in HNSCC, we selected the nearest gene neighbors of STAT1, a key mediator of cellular responses to type 1 and 2 IFN, using an empirical topologic overlap threshold of greater than 0.07 (179 genes). Pathways common analysis in ToppGene indicated that this gene list was highly overrepresented in IFN-signaling genes (P_adj = 5.8 × 10^-46). On the basis of their kME, principal component analysis (PCA) separated the STAT1-coexpressed genes into two distinct clusters corresponding to membership of M10 (GO-type:1 IFN-signaling pathway) or M1/M8 (GO:leukocyte activation/regulation of immune-system process; Fig. 3C). Within the latter were components of the CD3-TCR complex and CD8A, as well as genes encoding CD8+ T-cell effector statistics (19), all modules except one (M5, corresponding to genes enriched for “regulation of RNA metabolic process”) were strongly preserved in the HNSCC microarray data (Supplementary Table S1), showing that gene coexpression modules are highly reproducible in HNSCC. The lack of strong preservation of M5 is most likely due to the absence of 148 mapped RNA-Seq genes from M5 in the microarray probe sets, including the C2orf62 hub gene.

Previously validated cluster analysis identified four subtypes of HNSCC (basal, mesenchymal, classical, and atypical), which are consistent with canonical genomic alterations (16, 20, 21). To capture the relationship between these transcriptional classes and the coexpression modules, we overlaid the TCGA-HNSCC network (Fig. 1B) with the correlation between each gene’s expression profile and the tumor subtype. This integrative approach revealed regions of the network showing changes in the HNSCC transcriptome that correlated with a given subtype (Fig. 1C-F). Five modules (M3, M8, M11, M12, and border of M1) formed a network sub region (“meta-module”) associated with mesenchymal tumors (Fig. 1C), which are defined by the expression of genes linked with EMT and/or containing fibroblasts with a strong desmoplastic response (20). In contrast, the basal subtype, which typically exhibit EGFR and MYC gene amplification (21) and include tumors with HRAS-CASP8 comutation (16), centered around modules M2 and M4 (Fig. 1D). The remaining subtypes were associated with two further network regions, encompassing module M9 (classical, Fig. 1E) and modules M6, M5 and M1 (atypical, Fig. 1F). The classical subtype typically exhibits deletion of 3p and 9p, and amplification of 3q, whereas an enrichment of HPV-positive tumors and a lack of EGFR amplification or deletion of 9p characterize the atypical subtype (16, 21).

Statistical analysis (19) of module membership scores for each network gene showed that genes with strongly preserved coexpression modules were highly associated with clinical outcome, with higher module membership scores correlated with longer survival times (Fig. 2B). Thus, while increased expression of the CD8+ T-cell signature was predictive of survival in both univariate and multivariate analyses (Supplementary Fig. S3A and S3C), no significant prognostic value was observed for the myeloid lineage gene set (Supplementary Fig. S3B and S3C).
molecules such as granzyme B, perforin-1, Fas ligand, and IFN-γ. In addition, 212 of 751 M1 genes were identified as IFN-responsive in the Interferome database (28), suggesting that M1 reflects ongoing (chronic) T-cell-mediated inflammation. This premise was supported by the correlation of several inhibitory receptor genes, including TIGIT, PDCD1 (PD-1), and LAG3, with STAT1 and CD8A expression (Fig. 3C). Unsupervised hierarchical clustering of the nearest neighbor genes of STAT1 failed to differentiate between HPV status (Fig. 3D), indicating that CD8⁺ T-cell responses were not necessarily directed toward viral antigens (29). Nevertheless, expression of multiple inhibitory receptor genes argues for an antigen-specific component to these responses and suggests these phenotypically exhausted T cells are providing a level of tumor control, as proposed by Zehn and colleagues (30).

Expression of the leukocyte activation module inversely correlates with dysregulated tumor metabolism

The primary aim of this analysis was to identify gene sets from the HNSCC network whose expression was associated with low TIL abundance. Toward this goal, we next focused on modules that inversely correlated with M1, namely modules M2, M4, and M7 (Fig. 4A), which together comprised a meta-module associated with basal tumors (Fig. 1D). Examination of genes with a strong membership of these modules (kME ≥ 0.70) revealed GO categories enriched for wound healing, skin development, and translational termination (Supplementary Table S1). To understand the potential molecular basis by which these module genes regulate TIL frequency, we combined pathway analysis based on genes that inversely correlated with M1 (kME1 < −0.40) followed by network visualization of
enriched pathways using ToppCluster (31). This approach linked EGFR triggering with mTOR signaling and aerobic glycolysis (Supplementary Fig. S4A). To further evaluate this association, GSEA was performed to characterize an extended network gene list (15,749 genes), preranked by the correlation between the gene's expression profile and ME1. In agreement with the analysis in ToppCluster, GSEA showed that gene signatures of Myc activation, mTORC1 signaling and glycolysis were negatively correlated with membership of M1 (Fig. 4B–D, see also Supplementary Table S2). Among the core-enriched genes recurring in these pathways were those coding for critical components of glucose and glutamine metabolism (Fig. 4E), such as facilitated glucose transporter, member 1 (GLUT-1; kME1 = 0.57), fructose-biphosphate aldolase A (kME1 = −0.45), and the terminal enzyme of glycolysis, pyruvate kinase (PKM2; kME1 = −0.40). Consistent with the inverse correlation with M1, increased...
Figure 4.
Expression of the leukocyte activation module inversely correlates with tumor glycolysis. A, heatmap of the correlation between expression of each ME cell shows correlation coefficient (top) and corresponding P value (bottom). B–D, GSEA of HNSCC genes preranked by membership of M1 (high-to-low) with given MSigDB hallmark gene sets. A negative NES indicates gene set enrichment at the bottom of the ranked list. E, bar graph of a glucose metabolism gene set (x-axis) with correlation between the gene's expression profile and membership of the module indicated. F, HIF1A log2 expression. Each data point represents a tumor sample classified according to the transcriptional subtype indicated. G, network gene correlation with a hypoxia signature eigengene. Red and blue colors show positive and negative correlation, respectively.
expression of this gene set is associated with decreased survival time (Supplementary Fig. S4B).

Expression of HIF1A, an important regulator of glycolysis (32), was significantly higher in basal tumors compared with the rest of the transcriptional subtypes (Fig. 4F) and inversely correlated with ME1 ($r = -0.29$). To examine the relationship between HIF1A target genes and the four transcriptional subtypes of HNSCC, we correlated network gene expression and the first principal component of a hypoxia-associated gene set (33). The hypoxia eigengene highlighted regions of the network centered on module M2 (Fig. 4G), but also included elements of modules M3 (GO: extracellular matrix organization) and M10 (GO: type-1 IFN-signaling pathway). Taken together, these findings suggested that the strong inverse correlation with module M1 and basal subtype tumors could be due to increased glycolysis driven by hypoxia and/or EGFR signaling.

Of the 246 HNSCC samples subjected to WGCNA, 171 had paired reverse-phase protein array (RPRA) data for 161 cancer-related proteins and phosphoproteins, including EGFR. We therefore correlated protein expression from matched samples with the MEs. In accord with the RNA-Seq data, coexpression of proteins positively associated with ME2, ME4, and ME7, inversely correlated with ME1 (Fig. 5A–C). To investigate the relationship between these proteins and HIF1A activity, we overlaid a coexpression network constructed from the RPRA data with the correlation between each protein’s expression profile and the M1 or hypoxia signature eigengene. This approach revealed a cluster of proteins positively correlated with HIF1A-responsive genes that inversely correlated with M1 (Fig. 5D). Among these proteins were the phosphorylated HER2 (Y1248) and EGFR (Y992, Y1068, and Y1173).

The inverse relationship between a leukocyte activation module and tumor metabolism is a consistent feature of SCC

To explore how HIF1A activity and tumor metabolism affects the percentage of TILs in other types of SCC, we used consensus WGCNA to identify conserved modules across cervical ($n = 200$), esophageal ($n = 83$), and lung ($n = 362$) RNA-Seq datasets. Full details of the resulting network (Fig. 6A) are provided in Supplementary Table S3. All 17 consensus modules, which by construction are present in all input datasets (15), were also strongly preserved in the HNSCC adjacency matrix (Supplementary Table S3). Among the consensus modules was cM6 (GO: leukocyte activation), which significantly correlated with percent TILs ($r = 0.43$, $P = 8.9 \times 10^{-16}$) and for genes overrepresented in effector CD8+ TCR-α-β T-cells ($P_{\text{adj}} = 7.6 \times 10^{-66}$). Expression of modules cM1 (GO: translational initiation), cM2 (GO: chromosome organization), cM7 (GO: xenobiotic metabolic process), and cM10 (GO: cell-cycle process) inversely correlated with cM6 (Supplementary Table S3 and Fig. 6B), which together comprised a meta-module associated with HIF1A-responsive genes (Fig. 6C). The observed negative correlation of cM6 (GO: leukocyte activation) with HIF1A activity ($\text{cor cM6} = -0.37$, $P = 1.5 \times 10^{-11}$) suggests that either the tumor tissue was hypoxic, or it featured activated receptor tyrosine kinase and/or PI3K/Akt/mTOR pathways that stabilize HIF1A (34, 35). Supporting the latter, GSEA showed that a hallmark gene signature of mTORC1 signaling was negatively associated with membership of cM6 (Fig. 6D). Among genes that inversely correlated with cM6 were those coding for EGFR, HER2 (ERBB2), Akt, and components of mTORC1, including Raptor and mLST8 (Fig. 6E). The mTORC1 complex is a central regulator of cellular metabolism and promotes glycolysis by inducing PKM2 under normoxic conditions (36). Furthermore, expression of DEPTOR, a negative regulator of the mTOR signaling pathway, inversely correlated with the hypoxia eigengene while positively correlated with cM6 (Fig. 6E). Similarly, PTEN, which antagonizes PI3K function and consequently activation of Akt and PDK1 by dephosphorylating PIP3, was among genes that positively correlated with cM6.

These findings are compatible with dysregulated signaling in SCC promoting HIF1A stabilization, avid glucose uptake via GLUT-1 and elevated glycolysis. This may in turn lead to competition for glucose creating a T-cell immunosuppressive tumor microenvironment (37). Alternatively, lactate, the end product of glycolysis may impair T-cell expansion (38). In this regard, monocarboxylate transporter type 1 (SEC16A1) was among HIF1A-responsive genes that inversely correlated with the leukocyte activation ME (Figs. 4E and 6E).

High GLUT-1 expression inversely correlates with TIL infiltration in HNSCC and delays tumor regression in a preclinical model of T-cell-based therapy

To confirm the association of low TIL abundance with GLUT-1 expression, tumor tissue from 308 HNSCC patients (HPV-negative = 187; HPV-positive = 121) were analyzed by IHC. Expression of GLUT-1 inversely correlated with TIL levels ($r = -0.42$, $P < 0.001$), as assessed on hematoxylin and eosin–stained sections, and inversely correlated with numbers of CD3+ T-cells ($r = -0.43$, $P < 0.001$) and CD8+ T-cells ($r = -0.40$, $P < 0.001$). Similarly, expression of HIF-1α inversely correlated with TILs ($r = -0.49$, $P < 0.001$).

Of the 308 patients included in the study, 108 were known to have died from HNSCC. We have previously shown that TIL density predicts for survival in this cohort of patients (Fig. 7A; ref. 5). There was a highly significant difference between the Kaplan–Meier curves for mortality according to GLUT-1 expression (log rank $P < 0.001$; Fig. 7B). The HRs for high GLUT-1 expression indicated a 3.0-fold increase in HNSCC mortality compared with low expression [HR = 2.96 (1.81–4.82), $P = 0.006$]. However, these associations were nonsignificant after multivariate analysis adjusted for major HNSCC risk factors (age, stage, HPV status, and grade) and high GLUT-1 [HR = 1.79 (0.92–3.28), $P = 0.197$]. Consistent with the WGCNA, a significant correlation was present between GLUT-1 and EGFR protein expression ($r = 0.21$, $P < 0.001$).

To validate these observations, we examined expression of EGFR, HIF-1α, GLUT-1, and TIL in 34 cases of lung SCC (93 TMA cores) and found a similar significant ($P < 0.001$) inverse correlation between CD8+ TIL with EGFR ($r = -0.34$), HIF-1α ($r = -0.54$), and GLUT-1 ($r = -0.43$). EGFR expression positively correlated with GLUT-1 ($r = 0.50$).

To examine whether high GLUT-1 expression impacts on immune evasion by tumors, we engineered the syngeneic TC-1 tumor model (39), which expresses HPV16 E6 and E7, to overexpress murine GLUT-1 (Fig. 7C). Initially, we measured the TC-1 cell extracellular acidification rate (ECAR) as a surrogate marker of glycolysis. A baseline measure of ECAR was obtained in both control-transduced and GLUT-1–transduced TC-1 cells, with a significantly higher increase in TC-1 cells overexpressing GLUT-1 compared with control-transduced cells ($P < 0.001$).
Proteins whose expression inversely correlate with M1 are associated with a hypoxia signature. A–C, scatterplots of correlations between expressions for the 161 cancer-related proteins and phosphoproteins in the HNSCC RPPA dataset with ME1 (x-axes) versus ME2 (A), ME4 (B), or ME7 (C). D, network graph where each node represents a protein labeled by color according to the correlation between its expression profile and ME1. Red and blue colors show positive and negative ME1 correlation, respectively. Node size reflects the strength of correlation with the hypoxia signature eigengene (larger size = stronger correlation).
GLUT-1 ($P<0.0001$, Fig. 7D). The subsequent injection of 2-DG decreased ECAR to basal levels. Thus, TC-1 cells transduced with GLUT-1 had a significantly higher glycolytic rate. To explore whether increased glucose metabolism affects the therapeutic potential of tumor-specific T-cells, we challenged syngeneic mice with control-transduced or GLUT-1–transduced TC-1 cells, and on day 3, immunized the recipients with empty vector or a protective HPV16 E7/E6 fusion gene vaccine. Immunization with this DNA vaccine elicits an effector CD8$^{+}$T-cell response largely focused on the immunodominant H-2Dd–binding E7 epitope RAHYNIVTF (Supplementary Fig. S5). Tumors grew progressively in empty vector immunized mice at comparable rates (Fig. 7E and F). However, whereas immunization with E7/E6 rapidly prevented tumor progression in mice challenged with control-transduced TC-1 cells (10/10 mice tumor-free by day 17, Fig. 7G), the overexpression of GLUT-1 significantly delayed tumor regression (4/10 mice tumor-free by day 21, Fig. 7H).

Discussion

In this study, we employed a systems biologic approach to integrate HNSCC omics data with histopathologic features to identify molecular correlates of TIL frequency. Our analysis identified a leukocyte activation module associated with effector CD8$^{+}$ T cells and favorable prognosis, whose expression inversely correlates with a HIF metabolic transcriptome. Here, we have demonstrated for the first time, to our knowledge that tumors engineered to have a higher glycolytic rate are resistant to T-cell–based immunotherapy. Our data provide evidence that link TIL abundance and therapeutic outcome to the regulation of aerobic glycolysis by EGFR and HIF1A, which are
attractive targets for the development of more effective immunotherapeutic strategies.

Network analysis of the HNSCC transcriptome identified two modules correlated with TIL frequency, M1 and M8, which are significantly enriched for genes associated with CD8\(^+\) TCR-\(\alpha\beta\) T cells and myeloid cells, respectively. The eigengenes for these two modules are strongly correlated \((r = 0.81)\). Despite their close topologic proximity, the unsupervised assignment of

Figure 7. High GLUT-1 expression is predictive of poor outcome in HNSCC and renders TC-1 tumors resistant to vaccine-induced T-cell-based therapy. A and B, Kaplan-Meier curves for HNSCC mortality according to abundance of TILs (A) or GLUT-1 expression (B). HNSCC-specific survival time was measured from date of diagnosis until date of death from HNSCC or date last seen alive. For those that died of other causes, survival from HNSCC was censored at the time of death. C, histogram plot of GLUT-1 expression by control-transduced (green) or GLUT-1-transduced (purple) TC-1 cells. D, analysis of ECAR by control-transduced or GLUT-1-transduced TC-1 cells upon addition of glucose and 2-DG. E-H, tumor therapy experiments where syngeneic mice were injected subcutaneously with either control-transduced (E and G) or GLUT-1-transduced (F and H) TC-1 cells, and then 3 days later vaccinated with empty vector (E and F) or a DNA vaccine encoding E6/E7 (G and H). The data are representative of two independent experiments.
differentially coexpressed genes into separate modules by WGCNA, reflecting their distinct underlying cell populations and activities, exemplifies the power of this approach to extract cell type–specific information from whole tissue and to elucidate regulatory circuits. Module M1 contains a large number of genes induced by IFNγ, including CITA and genes of the MHC class II–dependent antigen-processing pathway, indicating that IFNγ is upregulated and biologically available. Furthermore, within M1, genes coexpressed with STAT1 such as CD8A, IFNG, PRC1, and GZMB, are consistent with previous reports identifying CD8+ T-cell signatures prognostic for survival (4). Perhaps paradoxically, this favorable T-cell signature is associated with expression of multiple inhibitory receptor genes, including TIGIT, PD-1, and LAG3, which are thought to be markers of terminally differentiated ‘exhausted’ T cells (40).

The correlation of higher TIL frequency with favorable outcome is compatible with tumor antigen-specific T cells providing an immune surveillance role after clinical intervention. Indeed, the therapeutic effects achieved by blocking PD-1 signaling strongly support this premise. However, the prognostic significance of TILs may also reflect a distinct underlying tumor biology (41). Of the four previously validated gene expression subtypes of HNSCC (20, 21), the presence of the T-cell activation signature positively correlates with atypical and mesenchymal transcriptional classes, suggesting that tumors belonging to these subtypes are more capable of eliciting a productive T-cell response. For the atypical subtype, which is characterized by an enrichment of HPV-positive tumors, this capacity may reflect activation of a non-tolerized, HPV-specific polyclonal CD8+ T-cell repertoire (42). The increased immunogenicity of HPV-positive tumors may reflect their unique mutational landscape (16), with dissimilarities in oncogenic drivers between subsets potentially influencing the magnitude of neoantigenic T-cell stimulation. Conversely, variances in oncogenic signaling may alter the ability of the host to mount an antitumor immune response (16). Accordingly, we observed a strong inverse correlation with module M1 and basal-subtype tumors, which are associated with EGFR and MYC gene amplification, and high levels of HIF signaling. As a consequence, genes encoding glucose and amino acid transporters, glycolytic enzymes, lactate dehydrogenase, and pyruvate dehydrogenase kinase are strongly upregulated in basal as compared with mesenchymal tumors. These proteins act in concert to increase glucose metabolism and glucose dependency, augments their glycolytic capacity through increased mTOR signaling and glucose flux (49).

Moreover, metabolic reprogramming can lead to glucose depletion and accumulation of lactate effector functions by repressing sarco/ER Ca2+–ATPase activity (48). Glucose limitation can also lead to increased expression of PD-1 (37), suggesting that competition for metabolites may precede T-cell dysfunction. In this regard, blockade of PD-1 has been recently shown to boost antitumor CD8+ T-cell responses by augmenting their glycolytic capacity through increased mTOR signaling and glucose flux (49).

Our data suggest that targeting the EGFR pathway might offer a means of selectively modulating tumor metabolism, as reported in lung adenocarcinoma cells (50), without disrupting T-cell effector function. Trials, which combine standard treatment of anti-EGFR (cetuximab) and chemotherapy with anti-PD-1 (pembrolizumab), are already ongoing in metastatic or recurrent HNSCC (e.g., NCT02358031). In future work, it will therefore be of interest to evaluate whether molecular predictors of outcome can be confirmed in interventional trials.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: C.H. Ottenheimer, G.J. Thomas, S.M. Thirdborough
Development of methodology: E.L. Harden, S.M. Thirdborough
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): K.L. Perry, J. Staasakova, V. Jenet, J. Fleming, O. Wood, G.J. Thomas, S.M. Thirdborough
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): K.L. Perry, E.L. Harden, J. Woo, G.J. Thomas, S.M. Thirdborough
Writing, review, and/or revision of the manuscript: C.H. Woelk, G.J. Thomas, S.M. Thirdborough
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): E.L. Harden, J. Fleming, O. Wood
Study supervision: C.H. Woelk, S.M. Thirdborough

Acknowledgments
The authors thank the Uio8 BRB for support with animal work. Drs. Agnete Fredriksen and Ole Brekke (Vaccibody, Oslo, Norway) kindly provided the E7/E6 DNA vaccine.

Grant Support
This study was funded by the Cancer Research UK (C491/115951). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 19, 2015; revised April 4, 2016; accepted April 24, 2016; published OnlineFirst May 20, 2016.

References

Upregulated Glucose Metabolism Correlates Inversely with CD8$^+$
T-cell Infiltration and Survival in Squamous Cell Carcinoma

Christian H. Ottensmeier, Kate L. Perry, Elena L. Harden, et al.

Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-15-3121

Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2016/05/20/0008-5472.CAN-15-3121.DC1

This article cites 50 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/76/14/4136.full#ref-list-1

This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/76/14/4136.full#related-urls

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/76/14/4136.
Click on “Request Permissions” which will take you to the Copyright Clearance Center's (CCC) Rightslink site.