Cancer Research
Table of Contents

February 1, 2016 • Volume 76 • Number 3

BREAKING ADVANCES

- **507** Highlights from Recent Cancer Literature

CANCER RESEARCH 75th ANNIVERSARY COMMENTARIES

- **509** Fat, Calories, and Cancer
 Yves A. DeClerck
- **511** Observations on Radiation-Induced Lymphoid Tumors of Mice
 Rakesh Kumar

REVIEW

- **513** A Breakthrough: Macrophage-Directed Cancer Immunotherapy
 Charles D. Mills, Laurel L. Lenz, and Robert A. Harris

PRIORITY REPORT

- **517** VEGF-A/VEGFR Inhibition Restores Hematopoietic Homeostasis in the Bone Marrow and Attenuates Tumor Growth
 Rebekah K. O’Donnell, Beverly Falcon, Jeff Hanson, Whitney E. Goldstein, Carole Perruzzi, Shahin Rafii, William C. Aird, and Laura E. Benjamin
 Précis: This study provides preclinical proof of concept that the bone marrow hematopoietic niche can be directly targeted and opposed by antiangiogenic therapy.

INTEGRATED SYSTEMS AND TECHNOLOGIES

- **535** Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach
 Sebastien Benzekry, Amanda Tracz, Michalis Mastri, Ryan Corbeli, Dominique Barbolosi, and John M.L. Ebos
 Précis: A data-based mathematical model that assesses the impact of surgery on metastatic potential may have clinical uses to individualize adjuvant therapies that can extend cancer remission.

MICROENVIRONMENT AND IMMUNOLOGY

- **548** Citrullinated Vimentin Presented on MHC-II in Tumor Cells Is a Target for CD4+ T-Cell–Mediated Antitumor Immunity
 Victoria A. Brentville, Rachael L. Metheringham, Barbara Gunn, Peter Symonds, Ian Daniels, Mohamed Gijon, Katherine Cook, Wei Xue, and Lindy G. Durrant
 Précis: Results show how CD4 cells can mediate potent antitumor responses against modified self-epitopes presented on tumor cells, and they illustrate for the first time how the citrullinated peptides may offer especially attractive subjects for cancer vaccine development.

MOLECULAR AND CELLULAR PATHOBIOLOGY

- **561** Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation
 Minghui Li, Stephen C. Kales, Ke Ma, Benjamin A. Shoemaker, Juan Crespo-Barreto, Andrew L. Cangelosi, Stanley Lipkowitz, and Anna R. Panchenko
 Précis: This study describes a new computational approach to identify the functional consequences of cancer mutations using the ubiquitin ligase CBL as a model for proof of concept.

- **572** HEATR1 Negatively Regulates Akt to Help Sensitize Pancreatic Cancer Cells to Chemotherapy
 Tongzheng Liu, Yuan Fang, Haoxing Zhang, Min Deng, Bowen Gao, Nifang Niu, Iia Yu, SeungBaek Lee, Junglin Kim, Bo Qin, FangXie, Debra Evans, Liewei Wang, Wenhui Lou, and Zhenkun Lou
 Précis: This study offers several lines of evidence for a new predictive and prognostic biomarker of chemotherapy response and outcome in pancreatic cancer patients, with additional implications for methods to sensitize pancreatic tumors to therapeutic eradication.

February 1, 2016 • Volume 76 • Number 3

- **507** Highlights from Recent Cancer Literature
- **509** Fat, Calories, and Cancer
- **511** Observations on Radiation-Induced Lymphoid Tumors of Mice
- **513** A Breakthrough: Macrophage-Directed Cancer Immunotherapy
- **517** VEGF-A/VEGFR Inhibition Restores Hematopoietic Homeostasis in the Bone Marrow and Attenuates Tumor Growth
- **535** Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach
- **548** Citrullinated Vimentin Presented on MHC-II in Tumor Cells Is a Target for CD4+ T-Cell–Mediated Antitumor Immunity
- **561** Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation
- **572** HEATR1 Negatively Regulates Akt to Help Sensitize Pancreatic Cancer Cells to Chemotherapy
582 Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells
Dongwon Choi, Swapnika Ramu, Eunkyung Park, Erinson Jung, Sara Yang, Woonhyuk Jung, Inho Choi, Sunju Lee, Kyu Eui Kim, Young Jin Seong, Mingu Hong, George Daghlian, Daniel Kim, Eugene Shin, Jung In Seo, Vicken Khatchadourian, Mengchen Zou, Wei Li, Roger De Filippo, Paul Kokorowski, Andy Chang, Steve Kim, Ana Bertoni, Tania Weber Furlanetto, Sung Shin, Meng Li, Yibu Chen, Alex Wong, Chester Koh, Jan Geliebter, and Young-Kwon Hong
Précis: This study provides new insights into a potentially actionable molecular alteration underlying progression of aggressive thyroid cancers.

594 DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression
Précis: Epigenetic synergy between DNA methylation and histone variants contributes to the refractoriness of liver cancer cells to chemotherapy, with implications for identification of a biomarker of drug-induced senescent cells that may predict disease progression.

607 SIGMAR1 Regulates Membrane Electrical Activity in Response to Extracellular Matrix Stimulation to Drive Cancer Cell Invasiveness
David Crottès, Raphael Rapetti-Mauss, Francesca Alcarrà-Perez, Mélanie Tichet, Giuseppina Cariano, Sonia Martial, Hélène Guizouarn, Bernard Pelissier, Agnès Loubat, Alexandra Popa, Agnès Paquet, Marco Presta, Sophie Tartare-Deckert, Maria Luisa Cayuela, Patrick Martin, Franck Borgese, and Olivier Soriani
Précis: An important regulator of ion channel activity in cancer cells is found to promote aggressive and invasive behaviors, with potential implications for new therapeutic approaches to treat cancer.

619 PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease
Zejuan Li, Ping Chen, Rui Su, Chao Hu, Yuanjuan Li, Abdel G. Elkahlon, Zhixiang Zuo, Sandeep Gurbuxani, Stephen Arnowitz, Hengyou Weng, Yungui Wang, Shenglai Li, Hao Huang, Mary Beth Neilly, Gang Greg Wang, Xi Jiang, Paul P. Liu, Jie Jiu, and Jianjun Chen
Précis: A gene expression signature stimulated by two homeobox transcription factors in hematopoietic precursor offers intriguing new insights into how acute myeloid leukemias may arise.

622 Systemic Chromosome Instability Resulted in Colonic Transcriptomic Changes in Metabolic, Proliferation, and Stem Cell Regulators in Sgo1−/− Mice
Précis: A mouse model of chromosome instability reveals aberrant regulation of unexpected pathways and offers new targets for therapeutic and preventive strategies.

630 Bereavement Is Associated with an Increased Risk of HPV Infection and Cervical Cancer: An Epidemiological Study in Sweden
Donghao Lu, Karin Sundström, Pär Sparén, Katja Fall, Arvid Sjölander, Joakim Dillner, Nathalie Ylitalo Helm, Hans-Olov Adami, Unnur Valdimarsdóttir, and Fang Fang
Précis: Women who experience the loss of an immediate family member are at a higher risk of developing cervical cancer, possibly related to an increased incidence of oncogenic HPV infections, with implications for identifying at-risk individuals who could benefit from increased screening.

643 Hydroxamic Acid and Benzoic Acid–Based STAT3 Inhibitors Suppress Human Glioma and Breast Cancer Phenotypes In Vitro and In Vivo
Peilin Yue, Francisco Lopez-Tapia, David Paladino, Yifei Li, Chih-Hong Chen, Andrew T. Namanja, Tyvette Hillard, Yuan Chen, Marcus A. Tius, and James Turkson
Précis: STAT3 offers an attractive target for cancer therapy, but small molecule inhibitors with appealing pharmacologic and biologic properties in animals have been elusive.
Elucidation and Pharmacological Targeting of Novel Molecular Drivers of Follicular Lymphoma Progression

Précis: Computational interrogation of human B-cell regulatory networks enables the identification of key drivers of follicular lymphoma and provides a generalized approach for the systematic analysis of drug combinations that may offer the strongest antitumor responses.

Modulation of EZH2 Expression by MEK-ERK or PI3K-AKT Signaling in Lung Cancer Is Dictated by Different KRAS Oncogene Mutations

Précis: For those lung cancer patients whose tumors harbor KRAS mutations, the specific type of mutation determines which kinase effector signaling pathways to target along with the histone methyltransferase EZH2, defined here as a novel KRAS effector.

Deguelin Analogue SH-1242 Inhibits Hsp90 Activity and Exerts Potent Anticancer Efficacy with Limited Neurotoxicity

Précis: This study reports an important advance in the development of Hsp90 inhibitors as cancer therapeutics, a drug class that is appealing in principle but limited to date by significant toxic side-effects that have impeded clinical development.

Agonists of the TRAIL Death Receptor DR5 Sensitize Intestinal Stem Cells to Chemotherapy-Induced Cell Death and Trigger Gastrointestinal Toxicity

Précis: These findings suggest a strategy to reduce gastrointestinal toxicities that arise from combining chemotherapy with TRAIL death receptor agonists, with clinical implications for developing these agents for cancer therapy.
Integrated Genomic Analysis of Pancreatic Ductal Adenocarcinomas Reveals Genomic Rearrangement Events as Significant Drivers of Disease

Stephen J. Murphy, Steven N. Hart, Geoffrey C. Halling, Sarah H. Johnson, James B. Smadbeck, Travis Drucker, Joema Felipe Lima, Fariborz Rakhshan Rohakhtar, Faye R. Harris, Farhad Kosari, Subhaya Subramanian, Gloria M. Petersen, Timothy D. Wiltshire, Benjamin R. Kipp, Mark J. Truty, Robert R. McWilliams, Fergus J. Couch, and George Vasmatzis

Précis: Large genomic rearrangements may perturb signaling pathways that drive pancreatic cancer initiation, affecting progression to the same extent as point mutations, underscoring the need for comprehensive genomic analysis to elucidate disease mechanisms.

Correction: Development of a New Tracking Tool for the Human Monomeric Laminin-γ2 Chain In Vitro and In Vivo

ABOUT THE COVER

The monomeric Casitas B-lineage lymphoma (c-Cbl, CBL) RING finger ubiquitin ligase (blue) can bind to phosphorylated RTK (orange peptide) via the TKBD domain. Upon phosphorylation, CBL undergoes a large conformational change that positions the ubiquitin-conjugating enzyme E2 (green) active site close to RTK. Cancer mutation sites are mapped on the structure of the complex and are shown in yellow; Zn ions are shown as blue balls. Other stages of the CBL activation cycle are depicted in Figure 1 of the article. For details, see article by Li and colleagues on page 561.