

MET Exon 14 Mutation Encodes an Actionable Therapeutic Target in Lung Adenocarcinoma

Xinyuan Lu⁴, Nir Peled⁵, John Greer¹, Wei Wu¹, Peter Choi³, Alice H. Berger³, Sergio Wong⁴, Kuang-Yu Jen⁵, Youngho Seo⁴, Byron Hann¹, Angela Brooks⁶, Matthew Meyerson³, and Eric A. Collisson¹

Abstract

Targeting somatically activated oncogenes has revolutionized the treatment of non–small cell lung cancer (NSCLC). Mutations in the gene mesenchymal–epithelial transition (MET) near the exon 14 splice sites are recurrent in lung adenocarcinoma and cause exon skipping (MET14). Here, we analyzed 4,422 samples from 12 different malignancies to estimate the rate of said exon skipping. MET14 mutation and transcript were most common in lung adenocarcinoma. Endogenously expressed levels of MET14 transformed human epithelial lung cells in a hepatocyte growth factor–dependent manner. In addition, overexpression of the orthologous mouse allele induced lung adenocarcinoma in a novel, immunocompetent mouse model. Met inhibition showed clinical benefit in this model. In addition, we observed a clinical response to crizotinib in a patient with MET14-driven NSCLC, only to observe new missense mutations in the MET activation loop, critical for binding to crizotinib, upon clinical progression. These findings support genomically selected clinical trials directed toward MET14 in a fraction of NSCLC patients, confirm second-site mutations for further therapeutic targeting prior to and beyond acquired resistance, and provide an *in vivo* system for the study of MET14 in an immunocompetent host. Cancer Res; 77(16); 4498–505. ©2017 AACR.

Introduction

The mesenchymal–epithelial transition (MET) proto-oncogene has been extensively studied in human cancer. DNA amplification of wild-type (WT) MET, fusion of MET from chromosomal rearrangement, and activating kinase domain point mutations have all been identified as independent mechanisms of MET/hepatocyte growth factor (HGF) axis activation in cancer (1). Somatic mutations at or around the splice junctions of MET exon 14 (MET14) are a recurrent mechanism of MET activation and lead to a MET14 protein that lacks the intracellular juxtamembrane domain (2). The MET14 mutation and transcript occurs in around 3% to 4% of lung adenocarcinoma (LUAD: refs. 3, 4). Exon 14 of MET encodes an ubiquitin ligase site (Y1003), which promotes MET degradation (5). As such, extended protein half-life has been proposed as a selective force for MET14 mutations in cancer (2). Case reports have suggested varying degrees of responsiveness to experimental and FDA-approved agents that inhibit MET in patients with tumors harboring MET14 alleles (6), but preclinical models and clinical trials are lacking to date. Finally, acquired mutations in the MET gene have been observed recently in non–small cell lung cancer (NSCLC); one (MET⁴¹²⁰C) following treatment with chemotherapy, radiation and crizotinib (7), and another (MET⁴¹²⁰V⁴¹²⁰S) with an experimental MET inhibitor in an EGFR-mutant LUAD without pretreatment MET mutations (8). These reports suggest that second-site, acquired resistance might be combated by next-generation MET inhibitors. Several unanswered questions remain. Malignancies other than lung cancer have not been screened for the MET14 mutation and transcript. In addition, the role ligand (HGF) plays in signaling from the mutant receptor and the biochemical activity of this mutant protein has not been extensively characterized.

We describe the prevalence of MET14 in solid tumors and define the role of MET14 using both *in vitro* and *in vivo* models. We identify acquired resistance to crizotinib in a patient harboring a MET14 mutation. These findings qualify MET14 mutations as drivers of LUAD and identify a subpopulation of patients who may benefit from further development of targeted MET/HGF therapies and suggest that combinations of type I and II MET inhibitors might be best deployed together, to prevent activation loop mutations that drive single-agent resistance.

Materials and Methods

mRNA expression analysis and genomic analysis

The Cancer Genome Atlas (TCGA) PanCancer exon level RNA sequencing (RNA-seq) data were obtained (9), and mRNA data for seven types of cancers [rectum adenocarcinoma (READ), colon adenocarcinoma (COAD), lung squamous cell carcinoma...
(LIJSC), clear cell kidney cancer (KIRC), head and neck squamous cell carcinoma (HNSC), bladder urothelial carcinoma (BLCA), LIUAD) were downloaded from UCSC (Santa Cruz, CA). Genomic coordinates for MET exon 13 (chr7: 116411552-116411708), exon 14 (chr7: 116411903 -116412043), and exon 15 (chr7: 116414935 -116415165) were used to retrieve the expression of these three exons. We used a ratio of exon 14 to the average of neighboring exons 13 and 15 \(r = \text{exon } 14 \times 2 / (\text{exon } 13 + \text{exon } 15) \) (3). Samples with rate of skipping \(R < (1-r) > 0.6 \) were considered as exon 14 skipping (\(\Delta 14 \)), including partial skipping \(0.6 < R < 0.9 \) and near complete skipping \(R > 0.9 \). In TCGA_LIUAD, the samples were stratified into MET wt and MET\(\Delta 14 \) based on above predicted MET\(\Delta 14 \) mRNA status, HGF, and MET mRNA expression in two groups was plotted. Samples with MET\(\Delta 14 \) skipping identified in latest available TCGA LIUAD RNA-seq exon level data (\(n = 571 \)) were manually searched with corresponding MET genotyping in TCGA LIUAD samples with known whole-exome sequences (10). For specimens that had MET exon 14 skipping at the RNA level, but lacked somatic mutation calls, exome sequencing BAMs were downloaded from the NCI Genomic Data Commons (11). Soft-clipped reads near the genomic region of MET exon 14 were identified as potentially misaligned due to a larger deletion. The full sequence of the soft-clipped reads was realigned using BLAT (12). BLAT alignments supported larger deletions in these samples, with multiple read support. Normalized read counts were log2 transformed, scaled, and centered in R program. Two-tailed Student t test was used for two-group samples’ statistical analysis in R (Version 2.15).

Cell lines and cell culture

The AALE parental cell line was established and maintained as described previously (13, 14). The AALE parental cell line and the following stable cell lines were received as gifts in 2015 from P. Choi and A.H. Berger in M. Meyerson’s laboratory at Dana-Farber Cancer Institute (Boston, MA). No mycoplasma testing was performed. AALE MET sg pool and AALE GFP sg pool were infected with sgRNA encoded by pXPR001 and selected in puromycin (1.5 \(\mu \text{g/mL} \)). AALE MET sg F10 single clone and ZEB2 single clone were derived from transient transfection with pXPR001-METsg, followed by isolation by limiting dilution. MET exon 14 deletion was confirmed by PCR and immunoblotting. AALE cell lines expressing ectopic MET \(\Delta 14 \), METwt, REF, TPR-MET, TPR-MET ex14 wt, or TPR-MET ex14 Y1003F were infected with corresponding pLX302 lentivirus and selected in 1.5 \(\mu \text{g/mL} \) puromycin.

Protein stability

The experiment was performed as described previously (2). AALE cells were treated with 75 \(\mu \text{g/mL} \) cycloheximide after 5-minute exposure to HGF (50 ng/mL). Protein half-life was calculated from exponential regression of MET protein band intensity as assessed on a LiCor machine.

Trypsin assay

The experiment is a modified version of that described previously (15); intracellular (internalized) MET is protected from exogenous trypsin in cell culture while cell surface–displayed MET is trypsin sensitive (15). As schematized in Supplementary Fig. S2B, AALE cells were grown to 50% confluence and stimulated with HGF for various time periods. Subsequently, cells were shifted to 4°C, washed twice with PBS and for 10 minutes in ice-cold pH 3.7 medium (pH adjusted with HCl). After two washes with ice-cold PBS, the cells were treated with 0.1% Trypsin in PBS on ice for 30 minutes, followed by the addition of TNS (CC-5002, Lonza) and PBS washes. The cells were lysed and handled as described in the immunoblotting section in Supplementary Methods.

Ras-binding domain pull-down assays

The experiment was performed as described in ref. 16 according to Ras Activation Assay Kit instructions (BK008, Cytoskeleton).

Mouse model

All of the animal experiments were done under protocols reviewed and approved by University of California, San Francisco (San Francisco, CA) animal care committee. Tp53\(^{16/16} \) mouse has been described previously (17). We used \(1 \times 10^5 \) active viral particles/mL for PHAGE-MET14A and PHAGE-GFP and 1 \(\times 10^6 \) for PHAGE-KRAS\(^{G12D} \) (\(n = 3 \) mice each). Mice were euthanized at protocol-defined endpoint. See Supplementary Methods for pre-clinical therapeutic studies with mouse X-ray CT (\(\mu \text{CT} \)).

Clinical tumor and cell-free DNA sequencing

Pretreatment tumor sequencing at diagnosis was performed by Foundation Medicine (4). Cell-free DNA sequencing at the time of progression was performed by Guardant Health (18). GCP practice and Institutional Review Board regulation were followed in the study of patient material.

Results

MET exon 14 skipping occurs in LIUAD, but rarely in other malignancies

To determine the frequency with which MET-encoded mRNA transcripts specifically exclude exon 14 (i.e., MET\(\Delta 14 \)) in various cancer types, we examined RNA-seq from a total of 4,422 samples from the TCGA Pan-Cancer-12 set composed of cases from 12 different malignancies (9). First, we examined total mRNA expression of MET and its ligand HGF and found only LIUAD and KIRC had high levels of both transcripts (Supplementary Fig. S1A and S1B). Next, we used exon-level analysis to calculate a ratio of MET exon 14 to the average of neighboring exons 13 and 15 \(r = \text{exon } 14 \times 2 / (\text{exon } 13 + \text{exon } 15) \) (3) to identify 16 LIUAD samples from 571 (2.8% ref. 10) with MET\(\Delta 14 \) skipping (Fig. 1A; Supplementary Fig. S1C), while the other 6 cancer types have no or low (<1.2%) rates of MET exon 14 skipping. Fourteen of 16 MET\(\Delta 14 \) samples (87%) showed somatically encoded DNA MET alterations around splice sites (Fig. 1B; Supplementary Table S1; ref. 4). Fifteen of 2,582 samples from cancers other than lung showed RNA evidence of exon 14 skipping by the above metric. No splice site mutations supporting a somatic origin for this skipping were seen in other cancer types. Total MET and HGF mRNA expression did not differ between MET\(\Delta 14 \) and MET wt samples (Supplementary Fig. S1D). In summary, the relatively high MET\(\Delta 14 \) skipping rate and high total MET and HGF expression level suggest LIUAD as the appropriate setting for a deeper, functional investigation of MET\(\Delta 14 \) function.

MET exon 14 skipping transforms human lung epithelial cells in an HGF-dependent manner

The majority of MET\(\Delta 14 \) skipping occurs without MET amplification, at least in early-stage LIUAD (Supplementary Table S1; ref. 19). To model the effects of MET\(\Delta 14 \) expression from the endogenous promoter in a lung cancer-relevant cell type, we used...
CRISPR to target the MET intron/exon 14 junctions in AALE cells, an immortalized, non-transformed, human tracheobronchial epithelial cell line (14). sgRNA/CAS9-editing led to MET exon 14 skipping and METΔ14mRNA expression confirmed by RT-PCR (Supplementary Fig. S2A) and immunoblotting (Fig. 2A). Importantly, this endogenously transcribed system allowed us to decouple METΔ14’s biochemical function from overexpression, adding new knowledge to the existing ectopic expression cell line models that inevitably overexpress MET protein when introducing the mutation (4). Expression of METΔ14 from the endogenous locus (METsg) renders AALE cells anchorage independent in an HGF dose-dependent manner (Fig. 2A), despite equivalent or even lower total protein levels of the exon-skipped receptor compared to WT MET in GFPsg control AALE cells. Similarly, ectopically expressed METΔ14 cDNA transformed AALE cells in an HGF-dependent manner more efficiently than equivalently expressed wt MET under the same HGF concentration (Fig. 2B). TPR-MET, a cytosolic, hyperactive, HGF-independent MET fusion mutant with strong transforming ability (20) was used as a control for MET wt (Fig. 2D), whereas clone 2E9 has hemizygous editing of MET (Supplementary Fig. S3A, right lane). Immunoblotting confirmed that 1F10 expresses exclusively METΔ14, whereas the 2E9 clone expresses equivalent amounts of both wt MET (upper band) and METΔ14 (lower band; Supplementary Fig. S3B). Immunoblotting of cells treated with cycloheximide and serially collected at different time points (Fig. 3A) shows that METΔ14 has a 15% longer protein half-life (t1/2; Supplementary Fig. S3C) in both homozygous clone 1F10 (7.4 hours) compared with wt parental (6.5 hours) and in hemizygous clone 2E9 (8.5 vs. 7.6 hours; Supplementary Fig. S3C). Pooled METsg cells also showed similar trends, with a METΔ14 half-life of 7.9 hours compared with the 6.2 hours for MET wt in the GFPsg pool (control; Supplementary Fig. S3D and S3E). This modest increase in t1/2 confirms the role of exon 14-encoded Cbl-binding site in MET stability, but suggests additional, negative regulatory functions possibly attributable to the exon 14–encoded domains.

Figure 1. A, LUAD samples with no, partial, or near-complete MET exon 14 skipping and number of samples with wt and mutant MET in each group. B, Single-nucleotide variants and deletions seen near exon 14 in LUAD samples with mRNA evidence of exon 14 skipping.

Loss of MET exon 14 moderately increases MET protein stability
Deletion of exon 14 of MET prevents ubiquitination and therefore fosters stabilization of MET protein (2). We measured the half-lives of endogenously expressed wt MET and METΔ14 protein after HGF stimulation in two individual informative sgRNA/CAS9-edited AALE clones. 1F10 has complete MET editing (Fig. 2D), whereas clone 2E9 has hemizygous editing of MET (Supplementary Fig. S3A, right lane). Immunoblotting confirmed that 1F10 expresses exclusively METΔ14, whereas the 2E9 clone expresses equivalent amounts of both wt MET (upper band) and METΔ14 (lower band; Supplementary Fig. S3B). Immunoblotting of cells treated with cycloheximide and serially collected at different time points (Fig. 3A) shows that METΔ14 has a 15% longer protein half-life (t1/2; Supplementary Fig. S3C) in both homozygous clone 1F10 (7.4 hours) compared with wt parental (6.5 hours) and in hemizygous clone 2E9 (8.5 vs. 7.6 hours; Supplementary Fig. S3C). Pooled METsg cells also showed similar trends, with a METΔ14 half-life of 7.9 hours compared with the 6.2 hours for MET wt in the GFPsg pool (control; Supplementary Fig. S3D and S3E). This modest increase in t1/2 confirms the role of exon 14–encoded Cbl-binding site in MET stability, but suggests additional, negative regulatory functions possibly attributable to the exon 14–encoded domains.

MET exon 14–encoded domains regulate MET kinase activity beyond CBL engagement
To dissect the effects of METΔ14 on protein activity from those related to protein turnover, we generated multiple AALE cell lines with stable ectopic expression of mutant TRP-MET alleles. As TRP-MET lacks the MET exon 14 sequence (20), it has been used as a template upon which to study the independent effect(s) of exon 14 versus those of the Y1003 CBL-binding site on MET activity (21). We inserted either the wt or Y1003F exon 14 sequence into the TPR-MET fusion junction in frame with the c-terminus of MET (Fig. 3B, diagram). We generated AALE cells with stable expression...
Anchorage-independent growth was assessed by soft agar assay comparing AALE cells with stable ectopic expression of indicated constructs. Immunoblotting

B, trypsin for 30 minutes. Cell lysates were immunoblotted with MET and HSP90 as loading control.

assay. EGF-starved AALE cells were induced by HGF (50 ng/mL) for indicated time and then washed and cooled down on ice, followed by a treatment with

was determined by reverse transcription PCR from AALE parental cells and single clone (1F10) selected from

MET wt and METΔ14 was confirmed by immunoblotting. The sum of colonies from five random fields at week 3 is reported as the mean of duplicates (±SD). **, P < 0.01. B, Anchorage-independent growth was assessed by soft agar assay comparing AALE cells with stable ectopic expression of indicated constructs. Immunoblotting confirmed expression of FLAG-tagged constructs. The sum of colonies from five random fields at week 3 is reported as the mean of duplicates (±SD).

of these constructs respectively confirmed by immunoblotting (Supplementary Fig. S3F). Insertion of wt exon 14 inhibits 80% of the transforming activity of TPR-MET (Fig. 3C; Supplementary Fig. S3G). Introducing Y1003F, known to prevent Cbl binding (2) in exon 14, failed to reverse the inhibition of the transforming activity of TPR-MET by wt exon 14 sequence (Fig. 3C), consistent with previous reports in mouse fibroblasts (21). Similar effects are seen on RAS-GTP loading, a marker of RAS activation (Fig. 3D). Coimmunoprecipitation of alternatively tagged proteins demonstrated that exon 14 insertion does not disrupt TPR-MET dimerization (Supplementary Fig. S3H). These results confirm the previously described inhibitory role of exon 14 (2) and suggest additional negative regulatory function(s) of the exon 14-encoded juxtamembrane domain of MET beyond prevention of CBL engagement.

MetΔ15 Induces LLID in a novel in vivo mouse model

To explore the role of MET Δ14 in vivo, we utilized a mouse lung cancer model (Fig. 4A) in which lentiviruses encoding a cDNA in cis with Cre recombinase is delivered intranasally, leading to expression of the cDNA and ablation of floxed germline elements in the same lung cancer precursor cell. As amplification of MDM2 or TP53 mutation cooccurs with the vast majority of patients with MET exon 14 mutations (4, 6), we infected immunocompetent...
Trp53flox mice (22) with a lentivirus encoding mouse Met lacking exon 15 (MetΔ15, the mouse equivalent of human METΔ14) in cis with Cre recombinase. Lentivirus encoding KrasG12D or GFP in cis with Cre served as controls. Mice receiving KrasG12D or MetΔ15 lentivirus became tachypneic and were euthanized at 3 months postinfection. These animals all harbored high-grade LUAD, whereas those receiving GFPþ Cre virus did not (Fig. 4B; Supplementary Fig. S4A). IHC staining showed that all tumors expressed the lung marker Ttf-1 and proliferation marker Ki67 (Fig. 4C), while the MetΔ15-driven tumors specifically showed phospho-Met. Delivery of a distinct lentivirus encoding sgRNA targeting the endogenous mouse Met exon15 exon/intron junction in cis with Cre to Trp53flox mice resulted in adenoma but not adenocarcinoma formation at 3 months, indicating likely additive effects of MetΔ15 activity and Met overexpression or inherent differences in cDNA expression versus sgRNA editing, or both (Fig. 4C, right). In summary, the lentivirus-delivered MetΔ15 expression in combination with genetic mouse recapitulates some
MET Exon 14 Mutation in Lung Adenocarcinoma

Figure 5.
A, Representative microCT scans of mice receiving vehicle or crizotinib at the beginning (D0) and the end of treatment (D34). Yellow arrows, representative tumor areas. B, The change of tumor volume reconstructed from microCT. Percent volume change = (D34 - D0)/
D0 × 100%. C, Representative IHC of lungs from vehicle- or crizotinib-treated groups stained with antibodies against the indicated proteins. Ctrl, vehicle treated; Crizo, crizotinib treated. D, Quantification of Ki-67-positive cells from C. Tumors from two mice for each group were evaluated.

of the lung adenoma cases seen in human patients and is a model to study MetΔ15 inhibition in vivo.

Therapeutic benefit of Met inhibition in vivo
Crizotinib is FDA approved for the treatment of anaplastic lymphoma kinase (ALK)-fused NSCLC but also inhibits MET (23). Several groups have reported off-label use of crizotinib in NSCLC harboring MET exon 14 mutations (4, 19, 24). We deployed the MetΔ15/Trp53^{△ miss} model to study crizotinib response in vivo on MetΔ15-driven tumors. Tumor-bearing mice were randomized by tumor volume (as assessed by micro-CT) after 8 weeks of lentiviral induction. Fig. 5A, D0 panel) to receive either crizotinib (50 mg/kg/day) or vehicle. Crizotinib-treated mice had, on average, stable disease while control animals continued to progress (Fig. 5B; Supplementary Fig. S4B). Immunostaining for phospho-MET showed that crizotinib treatment inhibited Met autophosphorylation and activation (Fig. 5C). Ki-67 reactivity (Fig. 5C and D) was also significantly lower in the crizotinib-treated group. These results suggest that crizotinib has a favorable, but suboptimal, therapeutic effect in this novel Met exon skipping–driven mouse model of this important NSCLC subtype.

Response to crizotinib and acquired resistance in a patient with METΔ14-mutated NSCLC
We found coincident METΔ14 mutation with approximately 15× amplification, among other aberrations (Fig. 5A, inserted table) in a 63-year-old, otherwise healthy, never-smoking female diagnosed with LUAD and pain. Systemic therapy with crizotinib was initiated after detection of METΔ14 mutation with approximately 15× amplification in tumor sequencing results. Restaging PET/CT demonstrated a dramatic improvement of disseminated disease involving the liver, adrenals, multiple osseous lesions, and subcutaneous disease (Fig. 6A; Supplementary Fig. S5A) and a near-complete radiographic response at 3 months (Fig. 6B). Subsequent imaging at 9 months showed progression in the liver (Fig. 6C). Cell-free DNA sequencing (18) was performed in the setting of clinical progression to explore mechanisms of acquired resistance without rebiopsy. Pretreatment MET exon 14 skipping mutation and MET amplification were identified along with four new, subclonal, missense mutations in MET: D1228N, Y1230H, Y1230S, and G1163R (amino acid numbering according to UniProtKB P08581; Fig. 6C, inserted table), all of which are located in the ATP docking pocket (25, 26) and have been previously and independently reported to activate the kinase, impair crizotinib binding (23), and to lead to resistance to other MET inhibitors in vitro (26). These mutations occur in trans from one another and in quantitatively lower allele fractions than the initial MET exon 14 mutations (Supplementary Fig. S5B), indicating convergent, acquired resistance through activation loop interactions with crizotinib. This is the first clinical documentation of multiple secondary mutations in a crizotinib-treated case of METΔ14-driven LUAD, definitively proving that METΔ14 is the target of crizotinib and that METΔ14 is a therapeutic target in LUAD.

Discussion
The need to extend targeted approaches to larger fractions of patients with cancer is clear and compelling. We find 2.8% of LIADs show evidence of MET mRNA skipping, the vast majority of which result from acquired, somatic mutations and/or deletions in or around the exon 14–coding region of the gene, detectable with genome profiling of MET. The two of 16 samples in which we observed evidence of mRNA skipping but could not detect DNA aberrations in MET could be either false positive mRNA predictions or harbor yet unexplained mechanisms for exon 14 exclusion in the mRNA transcript of MET. The clinical relevance of this population of NSCLC is large, as METΔ14 was at least as frequent as ALK and ROS1 fusions combined in one large dataset where both fusions and skipping were evaluable (10). Our integrative genomic, biochemical, animal, and clinical analyses firmly establish METΔ14 as a driver event in NSCLC. We show that
META14 expression from the endogenous, nonamplified allele is transforming in an HGF-dependent manner, suggesting HGF levels as a possible independent determinant of activity, response, and resistance to therapy. Our experiments here were designed to decouple META14 catalytic activity from the effects of overexpression known to be transforming (27), a distinction our prior ectopic expression studies could not make (4). Our results with endogenous META14 expression levels achieved through genomic editing of a relevant human cell type argue that the exon 14-encoded portion of MET negatively regulates the kinase activity as well as the half-life of the receptor.

Case series have demonstrated variable responses to crizotinib treatment in patients with genomic MET alterations, including but not limited to META14. We show for the first time that expression of the analogous Met15 is oncogenic in adult mice and that its inhibition leads to demonstrable therapeutic benefit in vivo, proving MET itself (rather than an off-target kinase) as the most likely therapeutic target in the aforementioned clinical responses seen in patients. The use of this novel, preclinical model clarifies the likely target of a drug in routine use through directed interrogation of aberrations seen in actual patients. Variations of this flexible system could be deployed for evaluating numerous additional candidate driver oncogenes in a reliable, economically efficient, and clinically relevant timeline.

Finally, we report the first case of acquired resistance to MET inhibition through multiple secondary missense mutations clustered in the activation loop of MET. This case emphasizes several important concepts in the targeted therapy of solid tumors. Most importantly, this is the first clinical documentation of multiple secondary mutations in the META14 allele acquired upon clinical progression, definitively proving that META14 is a therapeutic target. Second, it underscores the clinical relevance of tumor heterogeneity, as evidenced by multiple missense mutations in trans to one another, converging on residues critical for crizotinib binding. Finally, this case stresses the importance of unbiased reassessment of tumor genotype at progression, which in this case nominates available MET inhibitors with distinct modes of binding for treatment of progressive disease.

Disclosure of Potential Conflicts of Interest
M. Meyerson reports receiving commercial research grants from Bayer, has ownership interest (including patents) in Foundation Medicine, and is a consultant/advisory board member for Foundation Medicine. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: X. Lu, N. Peled, M. Meyerson, E.A. Collisson
Development of methodology: N. Peled, J. Greer, P. Choi, A.H. Berger, Y. Seo, A. Brooks

Figure 6. Acquired resistance to crizotinib in a 63-year-old NSCLC patient with META14 mutation. PET of metastatic NSCLC in a 63-year-old female patient. A, Before treatment. B, After 1 month of crizotinib. C, Upon clinical progression. Inserted table: Amp, amplification; Dx, diagnosis; cfDNA, cell free DNA; ND, tested and not detected; NA, not assessed; MAF, mutant allele fraction; CN, copy number; ++, amplified.
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): X. Lu, N. Peled, P. Choi, S. Wong, Y. Seo, B. Hann
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): X. Lu, N. Peled, W. Wu, K.-Y. Jen, Y. Seo., B. Hann, A. Brooks
Writing, review, and/or revision of the manuscript: X. Lu, N. Peled, J. Greer, A.H. Berger, Y. Seo, B. Hann, A. Brooks, M. Meyerson, E.A. Collisson
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J. Greer, K.-Y. Jen, Y. Seo
Study supervision: Y. Seo, M. Meyerson, E.A. Collisson

Acknowledgments
We are grateful to the members of the Jura, Meyerson, and Collisson laboratories for discussion and Yan Guo for bioinformatics consulting. We acknowledge the Preclinical Therapeutics Core and Small Animal Imaging Core at UCSF and the Center for Comparative Medicine at UIC. Davis. We also wish to thank the Bandypadhyay, Bivona, Scott, Jacks, Ruggero, and McMahon laboratories for providing reagents.

Grant Support
M. Meyerson was supported by an American Cancer Society Research Professorship and by NCI grant R35-CA197568. E.A. Collisson was supported by the Doris Duke Charitable Foundation, American Lung Association, Lung Cancer Research Foundation, and NCI/NIH U24-CA1097 and RO1-CA178015. This work was supported by grants from the American Lung Association and United Against Lung Cancer (E.A. Collisson).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 26, 2016; revised December 31, 2016; accepted May 3, 2017; published OnlineFirst May 18, 2017.

References
2. X. Lu, N. Peled, J. Greer, A.H. Berger, Y. Seo, B. Hann, A. Brooks, M. Meyerson, E.A. Collisson
3. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): X. Lu, N. Peled, W. Wu, K.-Y. Jen, Y. Seo., B. Hann, A. Brooks
4. Writing, review, and/or revision of the manuscript: X. Lu, N. Peled, J. Greer, A.H. Berger, Y. Seo, B. Hann, A. Brooks, M. Meyerson, E.A. Collisson
5. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J. Greer, K.-Y. Jen, Y. Seo
6. Study supervision: Y. Seo, M. Meyerson, E.A. Collisson

References
2. X. Lu, N. Peled, J. Greer, A.H. Berger, Y. Seo, B. Hann, A. Brooks, M. Meyerson, E.A. Collisson
3. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): X. Lu, N. Peled, W. Wu, K.-Y. Jen, Y. Seo., B. Hann, A. Brooks
4. Writing, review, and/or revision of the manuscript: X. Lu, N. Peled, J. Greer, A.H. Berger, Y. Seo, B. Hann, A. Brooks, M. Meyerson, E.A. Collisson
5. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J. Greer, K.-Y. Jen, Y. Seo
6. Study supervision: Y. Seo, M. Meyerson, E.A. Collisson

References
MET Exon 14 Mutation Encodes an Actionable Therapeutic Target in Lung Adenocarcinoma

Xinyuan Lu, Nir Peled, John Greer, et al.

Cancer Res 2017;77:4498-4505. Published OnlineFirst May 18, 2017.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-16-1944

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2017/05/18/0008-5472.CAN-16-1944.DC1

Cited articles
This article cites 27 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/77/16/4498.full#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/77/16/4498.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/77/16/4498.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.