Cancer is a complex disorder extremely dependent on its microenvironment and highly regulated by multiple intracellular and extracellular stimuli. Studies show that reactive oxygen and nitrogen species (RONS) play key roles in cancer initiation and progression. Accumulation of RONS caused by imbalance between RONS generation and activity of antioxidant system (AOS) has been observed in many cancer types. This leads to alterations in gene expression levels, signal transduction pathways, and protein quality control machinery, that is, processes that regulate cancer cell proliferation, migration, invasion, and apoptosis. This review focuses on the latest advancements evidencing that RONS-induced modifications of key redox-sensitive residues in regulatory proteins, that is, cysteine oxidation/S-sulfenylation/S-glutathionylation/S-nitrosylation and tyrosine nitration, represent important molecular mechanisms underlying carcinogenesis. The oxidative/nitrosative modifications cause alterations in activities of intracellular effectors of MAPK- and PI3K/Akt-mediated signaling pathways, transcription factors (Nrf2, AP-1, NFxB, STAT3, and p53), components of ubiquitin/proteasomal and autophagy/lysosomal protein degradation systems, molecular chaperones, and cytoskeletal proteins. Redox-sensitive proteins, RONS-generating enzymes, and AOS components can serve as targets for relevant anticancer drugs. Chemo therapeutic agents exert their action via RONS generation and induction of cancer cell apoptosis, while drug resistance associates with RONS-induced cancer cell survival; this is exploited in selective anticancer therapy strategies. Cancer Res; 78(21); 6040–7. ©2018 AACR.

Abstract

Cancer is a complex disorder extremely dependent on its microenvironment and highly regulated by multiple intracellular and extracellular stimuli. Studies show that reactive oxygen and nitrogen species (RONS) play key roles in cancer initiation and progression. Accumulation of RONS caused by imbalance between RONS generation and activity of antioxidant system (AOS) has been observed in many cancer types. This leads to alterations in gene expression levels, signal transduction pathways, and protein quality control machinery, that is, processes that regulate cancer cell proliferation, migration, invasion, and apoptosis. This review focuses on the latest advancements evidencing that RONS-induced modifications of key redox-sensitive residues in regulatory proteins, that is, cysteine oxidation/S-sulfenylation/S-glutathionylation/S-nitrosylation and tyrosine nitration, represent important molecular mechanisms underlying carcinogenesis. The oxidative/nitrosative modifications cause alterations in activities of intracellular effectors of MAPK- and PI3K/Akt-mediated signaling pathways, transcription factors (Nrf2, AP-1, NFxB, STAT3, and p53), components of ubiquitin/proteasomal and autophagy/lysosomal protein degradation systems, molecular chaperones, and cytoskeletal proteins. Redox-sensitive proteins, RONS-generating enzymes, and AOS components can serve as targets for relevant anticancer drugs. Chemo therapeutic agents exert their action via RONS generation and induction of cancer cell apoptosis, while drug resistance associates with RONS-induced cancer cell survival; this is exploited in selective anticancer therapy strategies. Cancer Res; 78(21); 6040–7. ©2018 AACR.

Introduction

Cancer cells grow in low oxygen concentration environment denoted as hypoxia and adapt their metabolism to meet elevated requirements in energy and nutrients for proliferation and survival. Metabolic reprogramming is a hallmark of cancer cell phenotype that is characterized by increased anaerobic glycolysis, deficiency in oxidative phosphorylation and ATP generation, and the overall mitochondrial dysfunction (1). In response to hypoxia, an elevated production of reactive oxygen and nitrogen species (RONS) has been observed in various cancer cells (2). Mitochondria and Nox family NADPH oxidases are major internal sources of primary endogenous reactive oxygen species (ROS), superoxide anion radical (O₂⁻). The latter spontaneously or enzymatically, by superoxide dismutases (SOD), gives rise to hydrogen peroxide (H₂O₂) that, in turn, in the presence of Fe²⁺ produces hydroxyl radical (HO•; refs. 3, 4). Nitric oxide synthases (NOS) use L-arginine to produce primary RONS type, nitric oxide radical, •NO, that interacts with O₂•− yielding another RONS, peroxynitrite (ONOO−; ref. 5).

High reactivity of RONS and toxicity of their elevated concentrations for cells dictate the necessity of scavenging mechanisms. Under physiologic conditions, cellular redox homeostasis is maintained by balance between RONS generation and activity of endogenous antioxidant system (AOS; ref. 6). Both enzymatic and nonenzymatic AOS components terminate RONS propagation to result in low intracellular RONS concentrations that cause reversible oxidative/nitrosative modifications of redox-sensitive residues in regulatory proteins. This underlies redox switches in activities of intracellular effectors of cell signaling pathways and transcription factors. This phenomenon denoted as ROS/RNS signaling plays a key role in regulation of cell proliferation, differentiation, migration, and survival (7).

Oppositely, disbalance between RONS generation and AOS activity causes RONS accumulation and oxidative/nitrosative stress, which contribute to pathogenesis of various diseases including cancer (8). Studies evidence that oxidative/nitrosative stress causes alterations in signal transduction pathways, activity of transcription factors, ubiquitin/proteasomal and lysosomal/autophagy-mediated protein degradation, and cytoskeletal organization to contribute to disturbances in cellular homeostasis and higher level of proteotoxic stress in cancer cells as compared with normal cells (9). This review focuses on recent advancements in studying RONS-induced protein modifications as mechanisms underlying the abovementioned alterations to cause cancer initiation and progression.

Elevated RONS Generation in Cancer

Oxidative/nitrosative stress may both cause and modify tumor growth through multiple cellular and molecular events such as DNA damage and genome instability, shaping tumor...
microenvironment, and alteration in cell signaling, which transforms normal cells into malignant and neoplastic cells. Various human cancer types including ovarian, prostate, hepatic, bladder, breast, gastric, oral, and pharyngeal cancers can produce in vitro much greater amount of RONS and protein oxidation adducts and have decreased AOS activity as compared with nontransformed cells (10–13). Indeed, in HT29 colon carcinoma cell line, c-Src tyrosine kinase induces ROS generation by Nox1 through Rac-dependent mechanism (14). Hepatocellular carcinoma (HCC) cells overexpressed Nox1, DUOX1, and DUOX2, while normal cells failed to express all the three NADPH oxidases (15). Both DUOX1 and DUOX2 were highly expressed in MHCC-97H and MHCC-97L, but not in Bel-7402 cells. High Nox1/2/5 levels in patients with HCC correlated with expression of genes associated with cell survival and metastasis and poor prognosis (16).

Growth factors and cytokines can stimulate RONS production (Fig. 1). Indeed, TGFβ1 has been shown to activate Rac1 and stimulates ROS generation by NADPH oxidase accompanied by NFκB and MMP-2 activation, IL6 release, and enhanced SW1990 invasiveness (17). In addition, EGF stimulates NADPH oxidase and heme oxygenase-1 to activate NFκB via c-Src and PI3K/PKB/ Akt-mediated signaling and to enhance HT-29 colon cancer cells’ proliferation (18). Prolonged NO production by iNOS promoted angiogenesis and oral squamous cell carcinoma progression (19). In addition, NO generation by tumor-associated macrophages prevented tumor cells apoptosis and caused chemoresistance to cisplatin (20). However, in breast, colorectal, epidermoid, head, and neck tumors decrease in tetrahydrobiopterin level causes ROS uncoupling and production of O$_2^•$ and NO$^•$ instead of NO$^•$ to promote tumorigenesis (21). Reconstruction of coupled ROS activity shifted downstream signaling toward increased cGMP-dependent PKG activation, reduced β-catenin expression, and decreased NFκB activity. However, in some solid and hematologic malignancies, oxidative stress can induce apoptosis, and this may be exploited in selective anticancer therapy strategies (22). Ionizing radiation and chemotherapeutic agents work through either direct or indirect RONS generation followed by accumulation of oxidized proteins, DNA damage, and cell-cycle arrest. Indeed, tamoxifen, paclitaxel, RONS generation followed by accumulation of oxidized proteins, and heme oxygenase-1 to activate NFκB stimulation has been reported (27). ROS caused ERK1/2 and p38 activation, and IL1α-enhanced IL8 secretion in human pancreatic cancer cells (28), while HGF-induced H$_2$O$_2$ generation and JNK phosphorylation were observed in HICC cells (29).

In malignant lung epithelial cells, stimulation of caspase-9 and p38/MAPK associates with increased NO and antiapoptotic Bel-2 levels, suggesting that Bel-2 S-nitrosylation is critical for tumorigenesis (30). Furthermore, TPA-dependent ROS generation induces PKCα activation, sustained ERK1/2 phosphorylation, and integrin-α5, -α6, -β1 expression followed by HepG2 cell migration (31). This involves FAK, Src, and paxillin phosphorylation to enhance tumor progression.

In addition, chemotherapeutic agents trigger cancer cell apoptosis and autophagy through dose-dependent stimulation of ROS-MAPK signaling. Indeed, ROS-ERK1/2/5 signaling was involved in HCT116 human colon cancer cell autophagy caused by short-term treatment with MS-275, histone deacetylase inhibitor (32). Long-term treatment with MS-275 led to ROS-p38/ MAPK-mediated autophagy-to-apoptosis switch. Besides, salino- mycin induces autophagy-to-apoptosis switch in chemoresistant PC-3 prostate cancer cells via both ROS-ERK/p38 and ROS-PI3K/ Akt/mTOR signaling (33). Furthermore, AICAR-stimulated ROS-mediated AMPK, energy sensor, activation induces DJI-145 prostate cancer cell apoptosis through JNK phosphorylation, caspase-3 activation, and mTOR inhibition (34).

Mechanisms underlying RONS-induced MAPK activation involve oxidative modification and inhibition of various PTMs that dephosphorylate MAPKs. Specific oxidation of redox-sensitive Cys215 in PTBP1 followed by its inhibition was observed in HepG2 and A341 cancer cells (35). At 0.1 mmol/L H$_2$O$_2$, Cys215 was oxidized both reversibly to sulfenic acid, and irreversibly to sulfenic/sulfonic acids, while at 10 mmol/L H$_2$O$_2$ only irreversible Cys215 oxidation occurs (Table 1). In addition, H$_2$O$_2$-induced PTEN catalytic domain oxidation/inactivation causes both ERK1/2 and Akt phosphorylation/activation to enhance DJI145 cell migration and invasion (36).

Direct MAPK oxidation also contributes to cancer cell proliferative phenotype. Indeed, selective H$_2$O$_2$-induced oxidation/S-sulfenylation of ERK1/2, JNK, and p38/MAPK increases their binding to cognate upstream MAPKks/MEks and sustained LP07 murine tumor cell proliferation (37). Thus, in addition to intricate ways of MAPK spatiotemporal localization and phosphorylation dynamics, endogenous reversible oxidation/S-sulfenylation of redox-sensitive Cys in MAPKs and PTPs serve as fine-tuning mechanisms underlying regulation of MAPK-mediated signaling.

RONS-Induced Protein Modifications to Cancer Cell Signaling

RONS-MAPK signaling

Studies show that in cancer tissues, RONS activates all three members of MAPK family stress-responsive protein kinases including ERK1/2, JNK, and p38 (Fig. 1). Stimulation of RONS-MAPK signaling is involved in proliferation, migration, and invasion of human breast, liver, prostate, lung, skin, and pancreatic cancer cells. Indeed, dose-dependent O$_2^•$- and H$_2$O$_2$-induced migration of MDA-MB-231 breast cancer cells via activation of lysophosphatidic acid–stimulated PI3K/PAK1/ERK signaling has been reported (27). ROS caused ERK1/2 and p38 activation, and IL1α-enhanced IL8 secretion in human pancreatic cancer cells (28), while HGF-induced H$_2$O$_2$ generation and JNK phosphorylation were observed in HICC cells (29).

In malignant lung epithelial cells, stimulation of caspase-9 and p38/MAPK associates with increased NO and antiapoptotic Bel-2 levels, suggesting that Bel-2 S-nitrosylation is critical for tumorigenesis (30). Furthermore, TPA-dependent ROS generation induces PKCα activation, sustained ERK1/2 phosphorylation, and integrin-α5, -α6, -β1 expression followed by HepG2 cell migration (31). This involves FAK, Src, and paxillin phosphorylation to enhance tumor progression.

In addition, chemotherapeutic agents trigger cancer cell apoptosis and autophagy through dose-dependent stimulation of ROS-MAPK signaling. Indeed, ROS-ERK1/2 signaling was involved in HCT116 human colon cancer cell autophagy caused by short-term treatment with MS-275, histone deacetylase inhibitor (32). Long-term treatment with MS-275 led to ROS-p38/ MAPK-mediated autophagy-to-apoptosis switch. Besides, salino- mycin induces autophagy-to-apoptosis switch in chemoresistant PC-3 prostate cancer cells via both ROS-ERK/p38 and ROS-PI3K/ Akt/mTOR signaling (33). Furthermore, AICAR-stimulated ROS-mediated AMPK, energy sensor, activation induces DJI-145 prostate cancer cell apoptosis through JNK phosphorylation, caspase-3 activation, and mTOR inhibition (34).

Mechanisms underlying RONS-induced MAPK activation involve oxidative modification and inhibition of various PTMs that dephosphorylate MAPKs. Specific oxidation of redox-sensitive Cys215 in PTBP1 followed by its inhibition was observed in HepG2 and A341 cancer cells (35). At 0.1 mmol/L H$_2$O$_2$, Cys215 was oxidized both reversibly to sulfenic acid, and irreversibly to sulfenic/sulfonic acids, while at 10 mmol/L H$_2$O$_2$ only irreversible Cys215 oxidation occurs (Table 1). In addition, H$_2$O$_2$-induced PTEN catalytic domain oxidation/inactivation causes both ERK1/2 and Akt phosphorylation/activation to enhance DJI145 cell migration and invasion (36).

Direct MAPK oxidation also contributes to cancer cell proliferative phenotype. Indeed, selective H$_2$O$_2$-induced oxidation/S-sulfenylation of ERK1/2, JNK, and p38/MAPK increases their binding to cognate upstream MAPKks/MEks and sustained LP07 murine tumor cell proliferation (37). Thus, in addition to intricate ways of MAPK spatiotemporal localization and phosphorylation dynamics, endogenous reversible oxidation/S-sulfenylation of redox-sensitive Cys in MAPKs and PTPs serve as fine-tuning mechanisms underlying regulation of MAPK-mediated signaling.

RONS-P38/PI3K/Akt signaling

ROS-induced PI3K/Akt signaling plays a key role in acquisition of malignant phenotype by normal cells and survival of cancer cells through Akt activation or its negative regulator, PTEN, inactivation (Fig. 1). ROS trigger P13K activation and PKB/Akt-mediated upregulation of cell-cycle genes (cdk2, PRC1, and PCNA) contributing to E2- and 4-OH-E2–induced malignant transformation of MCF-10A human mammary epithelial cells (38). In addition, exogenous LPA-induced ERK and Akt phosphorylation/stimulation, and NFκB activation promote SKOV3 ovarian cancer cell proliferation through O$_2^•$- and H$_2$O$_2$-

Indirect stimulation of ROS-Akt signaling occurs through oxidative modifications of tumor suppressors, PTEN, and CDC25A phosphatases. In E2-dependent MCF-7 cells, this causes NRF-1 activation, p27 inhibition, and stimulated cell proliferation (41). PTEN transient inactivation results from H2O2-induced Cys124 oxidation/S-sulfenylation and Cys71-Cys124 disulfide bonding (42). Oxidative regulation of PI3K/Akt signaling involves GSH, peroxiredoxins (Prx), and glutaredoxins (Grx) that control ROS and oxidized protein levels.

Stimulation of PI3K/Akt signaling and cancer cell proliferation can be achieved through eNOS and *NO-induced Cys118 oxidation/S-nitrosylation in wild-type Ras small GTPases (43). It is
known that mutations in ras genes lead to permanently activated Ras proteins, and mutated human H-Ras, K-Ras, and N-Ras remain in GTP-bound oncogenic state. Induction of ROS production by Nox1 in K-Ras–dependent manner is considered as a key step in cellular malignant transformation and tumorigenesis (44).

Activation of transcription factors

Coordinated ROS-mediated activation of NFκB, p53, AP-1, HIF-1α, and STAT3 transcription factors is involved in expression of many genes controlling cancer cell metabolism and survival (Fig. 1). Indeed, EGF- and TNFα-induced ROS generation and MAPK-mediated signaling cause coordinated activation of NFκB and AP-1 during skin carcinogenesis (45). ROS increase DNA binding capacity of both NFκB and AP-1 and enhance proliferation of pancreatic cancer cells through IL8 secretion and ERK1/2 MAPK signaling (35).

NFXB is involved in cell response to various stress stimuli including oxidative stress, heavy metals, proinflammatory cytokines, and infectious agents to promote prosurvival gene expression. Canonical pathway of NFXB activation is triggered by phosphorylation of IκB, NFXB inhibitor, with IκB kinases (IKK) resulted in IκB release and UPS-mediated degradation. IKK-dependent mechanism can further association between inflammation and cancer growth because H2O2-induced IKKβ Cys179 oxidation/S-glutathionylation reversed by Gpx1 prevents TNFα-enhanced NFXB activation (46).

IKK-independent NFXB activation involves -NO-induced IκBα Tyr181 nitration (47) and Tyr42 phosphorylation through H2O2-induced c-Src oxidation during hypoxia/reoxygenation followed by IκBα dissociation from its complex with NFXB (48). During hypoxia, mitochondrial ROS promote HIF-1α expression and Heps2 hepatoma, SH-SY5Y neuroblastoma, and DLD-1 colon carcinoma cell survival via c-Src stimulation and NFXB activation (49). In addition, NFXB can be activated by -NO-induced Cys254 S-nitrosylation in caspase-like domain of c-FLIP, an inhibitor of TNFα, Fasl, and TRAIL-induced apoptosis (50).

NFXB can act cooperatively with STAT3 that is phosphorylated/activated by JAK tyrosine kinases. RONS altered phosphorylation of JAK2 through growth hormone associated with creating tumor

Table 1. Types of protein oxidative/nitrosative modifications responsible for redox switches in protein activities and relevant to cancer growth

<table>
<thead>
<tr>
<th>RONS types</th>
<th>Type of a protein modification</th>
<th>Modified residues</th>
<th>Modified protein</th>
<th>Cellular response</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O2 (dose-dependent)</td>
<td>Oxidation/S-sulfenylation/S-glutathionylation</td>
<td>Cys215</td>
<td>PTPIP1 phoshatase</td>
<td>ROS-MAPK signaling</td>
<td>35</td>
</tr>
<tr>
<td>O2* - and H2O2</td>
<td>Oxidation/S-sulfenylation</td>
<td>Cys124</td>
<td>Akt2</td>
<td>Cell migration, G1-S cell cycle transi</td>
<td>40</td>
</tr>
<tr>
<td>H2O2</td>
<td>Oxidation/S-sulfenylation, Cys71-Cys124 disulfide bonding</td>
<td>Cys124</td>
<td>PTEN</td>
<td>Stimulation of ROS-Pi3k/Akt signaling and cell proliferation</td>
<td>36, 42</td>
</tr>
<tr>
<td>NO</td>
<td>Oxidation/S-nitrosylation</td>
<td>Cys118</td>
<td>Wild-type Ras</td>
<td>Activation of Pi3K/PKB/Akt pathway</td>
<td>43</td>
</tr>
<tr>
<td>H2O2</td>
<td>Oxidation/S-glutathionylation</td>
<td>Cys379</td>
<td>IKKβ</td>
<td>Prevention of TNFα-induced NFXB activation</td>
<td>46</td>
</tr>
<tr>
<td>NO</td>
<td>Oxidation/nitration</td>
<td>Try181</td>
<td>IκBα</td>
<td>IKK-independent activation of NFXB</td>
<td>47</td>
</tr>
<tr>
<td>NO</td>
<td>Oxidation/S-nitrosylation</td>
<td>Cys254</td>
<td>c-FLIP</td>
<td>IKK-independent activation of NFXB</td>
<td>50</td>
</tr>
<tr>
<td>NO</td>
<td>Oxidation/nitration</td>
<td>Try1007/Tyr1008</td>
<td>JAK2</td>
<td>Progression of JAK/STAT/Akt signaling</td>
<td>51</td>
</tr>
<tr>
<td>NO, ONOO*</td>
<td>Oxidation/nitration</td>
<td>Try327</td>
<td>Wild-type p53</td>
<td>p53 DNA-binding and nuclear accumulation</td>
<td>54</td>
</tr>
<tr>
<td>H2O2 and HOCl</td>
<td>Oxidation/Cys226-Cys613 disulfide bond formation</td>
<td>Cys151, Cys226, Cys273, Cys288, Cys613</td>
<td>Keap1</td>
<td>Prevention of Nrf2 UPS-mediated degradation</td>
<td>57</td>
</tr>
<tr>
<td>NO</td>
<td>Oxidation/S-sulfenylation</td>
<td>Cys129</td>
<td>Mkp3</td>
<td>Mkp-3 UPS-mediated degradation and stimulation of ROS-ERK1/2 signaling</td>
<td>62</td>
</tr>
<tr>
<td>NO</td>
<td>Oxidation/S-nitrosylation</td>
<td>Cys128, Cys226</td>
<td>Bcl-2</td>
<td>Prevention of Bcl-2 UPS-mediated degradation and Bcl-2 stabilization</td>
<td>30, 66</td>
</tr>
<tr>
<td>H2O2, O2*</td>
<td>Oxidation/S-sulfenylation</td>
<td>Cys128, Cys226</td>
<td>Bcl-2</td>
<td>Bcl-2 UPS-mediated degradation</td>
<td>66</td>
</tr>
<tr>
<td>H2O2</td>
<td>Oxidation/S-glutathionylation</td>
<td>Cys422</td>
<td>Hsp60</td>
<td>ERK1/2 phosphorylation and activation</td>
<td>69</td>
</tr>
<tr>
<td>NO</td>
<td>Oxidation/S-glutathionylation</td>
<td>Cys18</td>
<td>Protein disulfide isomerase</td>
<td>Cytoskeleton remodeling</td>
<td>75, 76</td>
</tr>
</tbody>
</table>
inflammatory microenvironment as observed in human malignant glioblastoma (54).

RONS-induced alterations in activities of another master regulator of antioxidant cell response, Nrf2, and its negative regulator, Keap1, also have been observed. Under nonstressed conditions, Nrf2 binds to Keap1 to undergo degradation through UPS-mediated pathway. Under oxidative stress conditions, Nrf2 releases from complex with Keap1, to translocate into the nucleus, where it heterodimerizes with small Maf protein and binds to antioxidant responsive element (ARE) of antioxidant genes (55). Mutations in KEAP1 and NFE2 genes disrupt Keap1–Nrf2 complex followed by persistent Nrf2 activation to create tumor cell prosurvival environment and anticancer drug resistance.

Keap1 inhibition due to oxidation of redox-sensitive Cys residues causes conformational changes in Nrf2-Keap1-Cul3 E3 ligase complex to prevent Nrf2 UPS-mediated degradation. Large Cysteine amount in Keap1 provides its role as a sensor to various electrophiles/oxidants named Nrf2 inducers (56). Keap1 exposure to RONS causes Cys226 oxidation and Cys226-Cys613 disulfide bonding (Table 1), while Cys151 oxidation triggers intermolecular disulfide bonding (57). Conserved Cys residues in Nrf2 itself are also critical to electrophile sensing to control Nrf2 binding to target ARE, UPS-mediated degradation, and coactivator recruitment (58).

Oxidative stress–mediated Nrf2 expression is implicated in ER stress-positive breast cancer cell survival and tamoxifen resistance (24). However, RONS-induced controlled pharmacologic Nrf2 upregulation can inhibit cancer cell proliferation and migration. Indeed, bardoxolone-methyl causes mitochondrial ROS-induced Nrf2 activation to downregulate glycolysis and oxidative phosphorylation, to decrease intracellular GSH level and inhibit MCF-7 cell migration (59). In addition, resveratrol, a natural phytoestrogen, significantly upregulates Nrf2 causing SOD3, NQO1, and OGG1 antioxidant gene expression, and inhibited E2-induced breast cancer cell migration and apoptosis induction (60). Different cell response to pharmacologic Nrf2 activation may be explained by interplay with other transcription factors and diverse mechanisms underlying regulation of Keap1-Nrf2 signaling in target gene- and inducer-dependent manner.

RONS and Protein Quality Control in Cancer

UPS- and lysosomal/autophagy-mediated protein degradation

ROS-induced carcinogenesis may be caused by UPS-mediated degradation of regulators of ROS-generating enzymes and intracellular effectors of signaling pathways. For example, EGF-mediated Noxo1 phosphorylation triggers formation of enzymatically active complex with Noxa1 and ROS production. In human colon cancer cells, NoxO1 and Grb2 interaction causes E3 ligase recruitment, leading to Noxa1 UPS-mediated degradation and decrease in Noxa1 activity (61). Intracellular H2O2 accumulation led to UPS-mediated degradation of Mkp-3, negative regulator of ERK1/2, contributing to ovarian cancer cell survival and chemoresistance (62). Furthermore, glutamate-induced oxidative stress and PKC-δ activation, aberrant ERK1/2 stimulation, increased tumorigenicity, and chemoresistance involve UPS-mediated Mkp-1 degradation (63). Thus, targeting key oncoproteins to induce their RONS-mediated UPS-dependent degradation can serve as a basis for anticancer therapy.

Variety of tissue-specific proteasomes are targets for inhibitors used in anticancer therapy, although proteasome subtypes have different susceptibility to different inhibitors. Indeed, a proteasome inhibitor, b-AP15, causes distinct cellular response as compared with clinically used bortezomib and leads to oxidative stress- and endoplasmic reticulum stress–induced tumor cell apoptosis through JNK/AP-1–mediated signaling (64). Increased cancer cell resistance to existing proteasome inhibitors requires novel proteomic and drug discovery approaches.

Approximately 10%–20% of damaged proteins undergo degradation through lysosomal/autophagy pathway that plays a dual role in cancer cell death and survival being implicated in crosstalk between diverse cellular pathways including oncogene Ras-induced carcinogenesis, mitochondrial metabolism, redox status, and energy production (65). Generally, at initial cancer stages, autophagy inhibition is observed, while at advanced stages, autophagy is upregulated to provide cell survival and proliferation under oxygen/nutrient starved conditions. NO negatively regulates autophagy initiation through Becl-2 oxidation/S-nitrosylation to prevent UPS-mediated degradation and to inhibit apoptosis of malignant lung epithelial cells (66). However, Becl-2 exposure to O2−• caused its downregulation and UPS-mediated degradation, suggesting a proapoptotic role of this ROS type (Fig. 1).

Mitochondrial ROS production depends on lysosomal ferritin degradation followed by redox-active iron release and cancer cell death in response to anticancer agent, artemesate (67). In addition, zinc protoporphyrin exhibits anticancer effects via induction of β-catenin lysosomal degradation followed by inhibition of Wnt/β-catenin signaling (68). Crosstalk between ROS generation and autophagy is an emerging challenge in targeting for anticancer chemotherapy in preclinical and clinical studies.

Dysfunction of molecular chaperone machinery

Additional mechanism underlying ROS-induced carcinogenesis is disruption of molecular chaperone machinery, which leads to impairment in cellular protein quality control. Indeed, HGF-induced ROS generation in HepG2 cells causes decrease in free thiol group amount in HSP60 and protein disulfide isomerase (PDI) resulted from HSP60 Cys442 and PDI Cys18 S-glutathionylation followed by ERK1/2 phosphorylation/activation and HCC cell migration (69). In addition, HSP70 is expressed at very low concentrations in mitochondria of normal cells, being abundant in mitochondria of tumor cells to play key roles in stress-inducible pathways. HSP70 inhibition causes multifaceted mitochondrial dysfunction, impaired mitochondrial integrity, loss of mitochondrial membrane potential, reduced oxygen consumption, oxidative phosphorylation, and ATP production (70).

Mitochondria of tumor cells substantially differ from mitochondria of nontransformed cells in metabolism, energy and ROS production, and membrane permeability. HSP90, a key player of protein quality control machinery, compartmentalizes in mitochondria to provide mitochondrial reprogramming and apoptosis suppression. This is achieved via inhibition of AMPK, preservation of cytoskeletal dynamics, and release of FAK from its complex with FIP200, autophagy initiator, to promote cancer cell adhesion and apoptosis (71).

Because induction of HSP synthesis protects cancer cells from oxidative stress, effective HSP inhibitor–based anticancer therapy is of great concern. For example, ascorbate/menadione ROS-generating system used to induce cancer cell death exerts its action through complex mechanisms including glycolysis inhibition, dysregulation of calcium homeostasis, and impairment of HSP chaperoning functions (72). Additional strategy is an oxidative...
stress-induced HSP cleavage to cause degradation of their client proteins and cancer cell death (73).

Cytoskeletal disruption
Under physiologic conditions, cytoskeleton dynamics provides multiple cellular functions including migration, adhesion, and endocytosis. However, oxidative stress causes disruption in cytoskeleton assembly and dynamics, which facilitates cancer cell motility and aggressive behavior. RONS-induced cytoskeleton protein modifications change microtubule stability in a wide range of cancers. For example, treatment of pancreatic cancer cells with high H2O2 concentrations caused rapid loss of intracellular actin microfilaments and microtubules accompanied by increased NFkB activity and morphologic changes (74).

Cytoskeletal proteins, actin and vimentin, contain Cys and Met residues susceptible to oxidation. Cys oxidation/glutathionylation and both Cys and Met carboxylation (Table 1) in actin monomers control cytoskeleton dynamics (75). H2O2 significantly reduces cell adhesion on fibronectin, laminin, and collagen, and decreases FAK and paxillin and β1 integrin levels (76). These changes associate with increased NFkB activity, and actin and vimentin microfilament reorganization.

Another mechanism underlying regulation of cytoskeleton organization may involve proteolysis and protein fragmentation. Indeed, RhoA, a member of Ras-related small GTPases, which regulates actin microfilament assembly and cytoskeleton dynamics, undergoes proteolysis/cleavage in response to oxidative stress (77). Oxidative stress–induced cytoskeletal disruption correlates with poor prognosis and chemoresistance, especially, in patients with solid and hematologic cancers.

References
15. Lu CL, Qiu JI, Huang PZ, Zou RH, Hong J, Li BK, et al. NADPH oxidase DUOX1 and DUOX2 but not NOX4 are independent predictors in hepatocellular carcinoma after hepatectomy. Tumour Biol 2011;32:1173–82.

Reactive Oxygen and Nitrogen Species–Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy

Nurbubu T. Moldogazieva, Sergey V. Lutsenko and Alexander A. Terentiev

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-18-0980

Cited articles
This article cites 77 articles, 20 of which you can access for free at:
http://cancerres.aacrjournals.org/content/78/21/6040.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/78/21/6040.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/78/21/6040.
Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.