BREAKING INSIGHTS

6055 Highlights from Recent Cancer Literature

REVIEWS

6057 Mitohormesis, UPR™, and the Complexity of Mitochondrial DNA Landscapes in Cancer
Timothy C. Kenny, Maria L. Gomez, and Doris Germain

6067 Circulating Tumor Cell-Neutrophil Tango along the Metastatic Process
Massimo Saini, Barbara M. Szczesba, and Nicola Aceto

CANCER RESEARCH HIGHLIGHTS

6074 Targeting Mitochondrial Fission to Trigger Cancer Cell Death
V. Ashutosh Rao
See related article, p. 6215

6076 RadioGx: A New Preclinical Tool to Model Intrinsic Radiosensitivity
Daniel E. Spratt and Corey Speers
See related article, p. 6227

CONTROVERSY AND CONSENSUS

6079 E-Cigarettes: Unstandardized, Under-Regulated, Understudied, and Unknown Health and Cancer Risks
Ernest T. Hawk and Karen Colbert Maresso

GENOME AND EPIGENOME

6084 Epigenomic Profiling Discovers Trans-lineage SOX2 Partnerships Driving Tumor Heterogeneity in Lung Squamous Cell Carcinoma
Takashi Sato, Seungyeul Yoo, Ranrong Kong, Abhilasha Sinha, Prashanth Chandramani-Shivilingappa, Ayushi Patel, Maya Fridrikh, Osamu Nagano, Takashi Masuko, Mary Beth Beasley, Charles A. Powell, Jun Zhu, and Hideo Watanabe

6101 Histone-Related Genes Are Hypermethylated in Lung Cancer and Hypermethylated HIST1H4F Could Serve as a Pan-Cancer Biomarker
Shihua Dong, Wei Li, Lin Wang, Jie Hu, Yuanlin Song, Raelong Zhang, Xiaoguang Ren, Shimeng Ji, Jin Li, Peng Xu, Ying Liang, Gang Chen, Jia-Tao Lou, and Wenqiang Yu

Significance: These findings identify a new biomarker for cancer detection and show that hypermethylation of histone-related genes seems to persist across cancers.

6113 Follistatin-like Protein 1 Inhibits Lung Cancer Metastasis by Preventing Proteolytic Activation of Osteopontin
Jean Chiou, Yu-Chan Chang, Hsing-Fang Tsai, Yuan-Feng Lin, Ming-Shyan Huang, Chih-Jen Yang, and Michael Hsiao

Significance: These findings describe the novel interaction between FSTL1 and SPP1 and its role in the metastatic progression of lung adenocarcinoma.

6126 Mcl-1 Interacts with Akt to Promote Lung Cancer Progression

Significance: These findings indicate that targeting Mcl-1/Akt interaction by employing small molecules such as PH-687 represents a potentially new and effective strategy for cancer treatment.

6139 MK5 Regulates YAP Stability and Is a Molecular Target in YAP-Driven Cancers
Jimyung Seo, Min Hwan Kim, Hyowon Hong, Hye Jee Kim, Seongyeol Park, Sang Kyum Kim, and Joon Kim

Significance: These findings reveal MK5 is a novel kinase that regulates YAP in a LAT5-independent manner and can be targeted for cancer therapy.
6153 PGC1α Suppresses Prostate Cancer Cell Invasion through ERRα Transcriptional Control
Lorea Valcarcel-Jimenez, Alice Macchia, Eva Cossas-Molst, Ariane Schaub-Clerigüe,
Laura Camacho, Natalia Martín-Martín, Paolo Cicogna, Cristina Viera-Bardon, Sonia Fernández-Ruiz,
Irene Rodríguez-Hernandez, Ivana Hermanova, Janire Astobiza, Ana R. Cortazar, Jon Cortes-Mendizabal,
Antonio Gomez-Muñoz, Victoria Sanz-Moreno, Verónica Torrano, and Arkaitz Carracedo

Significance: These findings describe how downregulation of the prostate tumor suppressor PGC1α drives invasiveness and migration of prostate cancer cells.

6166 A Novel MYCN-Specific Antigene Oligonucleotide Deregulates Mitochondria and Inhibits Tumor Growth in MYCN-Amplified Neuroblastoma
Luca Montemurro, Salvatore Raielli, Silvia Angelucci, Damiano Bartolucci, Camilla Amadesi, Silvia Lampis,
Anna Lisa Scardovi, Leonardo Venturelli, Giammario Nieddu, Lucia Cerisoli, Matthias Fischer,
Gabriella Teti, Mirella Falconi, Andrea Pession, Patrizia Hrelia, and Roberto Tonelli

Significance: A second generation antigene peptide oligonucleotide targeting MYCN induces mitochondrial damage and inhibits growth of MYCN-amplified neuroblastoma cells.

6204 YAP1 Mediates Resistance to MEK1/2 Inhibition in Neuroblastomas with Hyperactivated RAS Signaling
Grace E. Coggins, Alvin Farrel, Komal S. Rathi, Colin M. Hayes, Laura Socolar, Jo Lynne Rokita, and John M. Maris

Significance: High-risk neuroblastomas with hyperactivated RAS signaling escape the selective pressure of MEK inhibition via YAP1-mediated transcriptional reprogramming and may be sensitive to combination therapies targeting both YAP1 and MEK.

6215 MFF Regulation of Mitochondrial Cell Death Is a Therapeutic Target in Cancer
Jae Ho Seo, Young Chan Chae, Andrew V. Kossenkov, Yu Geon Lee, Hsin-Yao Tang, Epta Agarwal,
Dmitry I. Gabrilovich, Lucia R. Languino, David W. Speicher, Prashanth K. Shastrula,
Alessandra Maria Storaci, Stefano Ferrero, Gabriella Gaudioso, Manuela Caroli, Davide Tosi,
Massimo Giorda, Valentina Vaira, Vito W. Rebecca, Meenhard Herlyn, Min Xiao, Dylan Fingerman,
Alessandra Martorella, Emmanuel Skordalakes, and Dario C. Altieri

Significance: These findings describe mitochondrial fission regulation using a peptidomimetic agent that disturbs the MFF-VDAC complex and displays anticancer activity in multiple tumor models.

See related commentary, p. 6074
ABOUT THE COVER

Cancer Research selects a cover image for each issue from suggestions submitted by our authors. This month's cover features a montage of our covers from 2019. We thank all authors who submitted cover art suggestion during this past year and look forward to receiving submissions in the coming year.
<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/79/24</th>
</tr>
</thead>
</table>

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/79/24. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.