TABLE OF CONTENTS

BREAKING INSIGHTS

1 Highlights from Recent Cancer Literature

OBITUARY

3 Bernard Fisher, MD: In Memoriam (1918–2019)
 Nancy E. Davidson

REVIEWS

5 The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology
 Catherine J. Libby, Jonathan McGonathy, Victor Darley-Usmar, and Anita B. Hjelmeland

17 Natural Killer Cell–Derived Vesicular miRNAs: A New Anticancer Approach?
 Muller Fabbri

CANCER RESEARCH HIGHLIGHTS

23 Physical Activity and Breast Cancer: Focusing on High-Risk Subgroups and Putting Recommendations in Context
 Nicole M. Niehoff, Alexandra J. White, and Dale P. Sandler
 See related article, p. 116

25 Investigating New Mechanisms of Acquired Resistance to Targeted Therapies: If You Hit Them Harder, Do They Get Up Differently?
 Konstantinos V. Floros, Aaron N. Hata, and Anthony C. Faber
 See related article, p. 79

METABOLISM AND CHEMICAL BIOLOGY

30 MET Inhibition Elicits PGC1α-Dependent Metabolic Reprogramming in Glioblastoma
 Yiru Zhang, Trang T.T. Nguyen, Enyuan Shang, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Junfei Zhao, Chang Shu, Consuelo Torrini, Maria J. Sanchez-Quintero, Giulio Kleiner, Elena Bianchetti, Mike-Andrew Westhoff, Catarina M. Quinzii, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, and Markus D. Siegelin
 c-MET inhibition causes profound metabolic reprogramming that can be targeted by drug combination therapies.

MOLECULAR CELL BIOLOGY

44 Phosphorylation of RAB7 by TBK1/IKKε Regulates Innate Immune Signaling in Triple-Negative Breast Cancer
 Jessica L. Ritter, Zehua Zhu, Tran C. Thai, Navin R. Mahadevan, Philipp Mertins, Erik H. Knelson, Brandon P. Piel, Saemi Han, Jacob D. Jaffe, Steven A. Carr, David A. Barbie, and Thanh U. Barbie
 These findings identify Rab7 as a substrate for TBK1 for regulation of innate immune signaling, thereby providing important insight for strategies aimed at manipulating the immune response to enhance therapeutic efficacy in TNBC.

57 Heparanase and Chemotherapy Synergize to Drive Macrophage Activation and Enhance Tumor Growth
 Udayan Bhattacharya, Lilach Gutter-Kapon, Tal Kan, Ilanit Boyango, Uri Barash, Shi-Ming Yang, Jingling Liu, Miriam Gross-Cohen, Ralph D. Sanderson, Yuval Shaked, Neta Ilan, and Israel Vlodavsky
 Chemotherapy-treated macrophages are activated to produce proinflammatory cytokines, which are blunted in the absence of heparanase.

CONTROVERSY AND CONSENSUS

27 Novel Mechanisms of Cancer Emerge When Accounting for Sex as a Biological Variable
 Melissa A. Wilson and Kenneth H. Buettow
TABLE OF CONTENTS

TUMOR BIOLOGY AND IMMUNOLOGY

69 Suppression of LIM Kinase 1 and LIM Kinase 2 Limits Glioblastoma Invasion
Joseph Chen, Badriprasad Ananthanarayanan, Kelsey S. Springer, Kayla J. Wolf, Sharon M. Sheyman, Vivien D. Tran, and Sanjay Kumar

Targeting the actin-binding proteins LIMK1 and LIMK2 significantly diminishes glioblastoma invasion and spread, suggesting the potential value of these proteins as therapeutic targets.

TRANSLATIONAL SCIENCE

79 A Single-Step, High-Dose Selection Scheme Reveals Distinct Mechanisms of Acquired Resistance to Oncogenic Kinase Inhibition in Cancer Cells
Kenneth J. Finn, Scott E. Martin, and Jeff Settleman

Through modeling resistance to MET kinase inhibition in cultured cancer cells using single-step, high-dose selection, these findings highlight that the specific nature of the selection protocol impacts which resistance mechanisms are identified.

See related commentary, p. 25

91 Adhesion of T Cells to Endothelial Cells Facilitates Blinatumomab-Associated Neurologic Adverse Events
Matthias Klinger, Gerhard Zugmaier, Virginie Nägele, Maria-Elisabeth Goebeler, Christian Brandl, Matthias Stelljes, Hans Lassmann, Arend von Stackelberg, Ralf C. Bargou, and Peter Kufer

This study proposes T-cell adhesion to endothelial cells as a necessary but insufficient first step for development of blinatumomab-associated neurological adverse events and suggests interfering with adhesion as a mitigation approach.

AC AC icon indicates Author Choice

For more information please visit www.aacrjournals.org

POPULATION AND PREVENTION SCIENCE

116 Recreational Physical Activity Is Associated with Reduced Breast Cancer Risk in Adult Women at High Risk for Breast Cancer: A Cohort Study of Women Selected for Familial and Genetic Risk

These findings suggest that physical activity might reduce breast cancer risk by about 20% for women across the risk continuum, including women at higher-than-average risk due to their family history or genetic susceptibility.

See related commentary, p. 23

126 Acknowledgment to Reviewers
ABOUT THE COVER

The LIM kinase isoforms LIMK1 and LIMK2 (LIMK1/2) modulate actin cytoskeletal dynamics and control cell polarization, migration, and invasion. Thus, LIMK1/2 could potentially be targeted to combat glioblastoma infiltration. Structured illumination microscopy allows super resolution imaging of the actin cytoskeleton in glioblastoma cells expressing a nontargeting shRNA (bottom right), LIMK1 shRNA (top), and LIMK2 shRNA (bottom left). Individual knockdown of either isoform does not significantly compromise actin organization relative to control cells, whereas dual knockdown of both isoforms strongly disrupts actin architecture (not shown). For details, see article by Chen and colleagues on page 69.