CANCER RESEARCH

TABLE OF CONTENTS

BREAKING INSIGHTS

2967 Highlights from Recent Cancer Literature

REVIEW

2969 The Frequency of Ras Mutations in Cancer

CANCER RESEARCH HIGHLIGHTS

2975 Can Molecular Imaging Measure T-cell Activation?

2977 A Novel Mechanism to Induce BRCAness in Cancer Cells

CONTROVERSY AND CONSENSUS

2979 Synaptic Communication in Brain Cancer

MOLECULAR CELL BIOLOGY

2983 The EMT Transcription Factor ZEB2 Promotes Proliferation of Primary and Metastatic Melanoma While Suppressing an Invasive, Mesenchymal-Like Phenotype

2996 Chemotherapy-Induced IL8 Upregulates MDR1/ABCB1 in Tumor Blood Vessels and Results in Unfavorable Outcome

TUMOR BIOLOGY AND IMMUNOLOGY

3009 HACE1 Prevents Lung Carcinogenesis via Inhibition of RAC-Family GTPases

3023 ICOS Is an Indicator of T-cell–Mediated Response to Cancer Immunotherapy

Zunyu Xiao, Aaron T. Mayer, Tomomi W. Nobashi, and Sanjiv S. Gambhir

ICOS ImmunoPET is a promising strategy to noninvasively predict and monitor immunotherapy response.

See related commentary, p. 2975
Inactivation of the Prolyl Isomerase Pin1 Sensitizes BRCA1-Proficient Breast Cancer to PARP Inhibition
Man-Li Luo, Fang Zheng, Wenying Chen, Zhi-Mei Liang, Gurushankar Chandramouly, Jianan Tan, Nicholas A. Willis, Chun-Hau Chen, Mateus de Oliveira Taveira, Xiao Zhen Zhou, Kun Ping Lu, Ralph Scully, Gerburg M. Wulf, and Hai Hu
PARP inhibitors has been limited to treat homologous recombination-deficient tumors. All-trans retinoic acid, by inhibiting Pin1 and destabilizing BRCA1, extends benefit of PARP inhibitors to patients with homologous recombination-proficient tumors.
See related commentary, p. 2977

Targeting Hippo-Dependent and Hippo-Independent YAP1 Signaling for the Treatment of Childhood Rhabdomyosarcoma
This study elucidates the signaling pathways that regulate the oncogenic protein YAP1 and identifies a combination therapy to target these pathways in the childhood tumor rhabdomyosarcoma.

ABOUT THE COVER
Chemotherapy causes inflammatory changes, such as IL8 upregulation in tumors, inducing a drug transporter, ABCB1, expression in tumor endothelial cells. This causes drug resistance in tumor blood vessels. It is possible that tumor endothelial cells can survive during chemotherapy and keep providing a gateway for cancer metastasis. Targeting ABCB1 in tumor endothelial cells, or IL8 inhibition, represents a novel strategy to overcome cancer drug resistance. For details, see article by Kikuchi and colleagues on page 2996.