BREAKING INSIGHTS

3175 Highlights from Recent Cancer Literature

OBITUARY

3177 Mansukhlal Chhaganial Wani, PhD: In Memoriam (1925–2020)
 Rita Ghosh, Arti Patel Varanasi, Debasis Mondal,
 Meghana Trivedi, Kapil Mehta, Harikrishna Nakshatri,
 and Aniruddha Ganguly

REVIEW

3179 Pancreatic Adenocarcinoma: Unconventional Approaches for an Unconventional Disease
 Christopher Gromisch, Motaz Qadan,
 Mariana Albuquerque Machado, Kebin Liu,
 Yolonda Colson, and Mark W. Grinstaff

CANCER RESEARCH HIGHLIGHTS

3193 Bubble Bubble, Senescent Cells Are a Cauldron of Tumor Trouble
 Christopher D. Wiley
 See related article, p. 3383

3195 Anarchy or Respect the Hierarchy? The Complexity of Glioblastoma
 Robert F. Koncar and Sameer Agnihotri
 See related article, p. 3236

CONTROVERSY AND CONSENSUS

3197 Traditional Diagnostics versus Disruptive Technology: The Role of the Pathologist in the Era of Liquid Biopsy
 Lynette M. Sholl, Geoffrey R. Oxnard, and Cloud P. Paweletz

GENOME AND EPIGENOME

3200 FTO-Dependent N^6-Methyladenosine Modifications Inhibit Ovarian Cancer Stem Cell Self-Renewal by Blocking cAMP Signaling
 Hao Huang, Yinu Wang, Manoj Kandpal,
 Guangyuan Zhao, Horacio Cardenas, Yanrong Ji,
 Anusha Chaparala, Edward J. Tanner, Jianjun Chen,
 Ramana V. Davuluri, and Daniela Matei
 A new tumor suppressor function of the RNA demethylase FTO implicates m^6A RNA modifications in the regulation of cyclic AMP signaling involved in stemness and tumor initiation.

METABOLISM AND CHEMICAL BIOLOGY

3215 Obesity/Type 2 Diabetes-Associated Liver Tumors Are Sensitive to Cyclin D1 Deficiency
 Chi Luo, Jiaxin Liang, Kfir Sharabi, Maximilian Hatting,
 Elizabeth A. Perry, Clint D.J. Tavares, Lipika Goyal,
 Amitabh Srivastava, Marc Bilodeau, Andrew X. Zhu,
 Piotr Scinski, and Pere Puigserver
 Obesity/diabetes-associated liver tumors are specifically vulnerable to cyclin D1 deficiency and CDK4 inhibition, suggesting that the obese/diabetic environment confers cancer-selective dependencies that can be therapeutically exploited.

MOLECULAR CELL BIOLOGY

3222 Extracellular Vesicles from Cancer-Associated Fibroblasts Containing Annexin A6 Induces FAK-YAP Activation by Stabilizing β1 Integrin, Enhancing Drug Resistance
 Tomoyuki Uchihara, Keisuke Miyake, Atsuko Yonemura,
 Yoshihiro Komohara, Rumi Itoyama, Mayu Koika,
 Tadahito Yasuda, Kota Arima, Kazuto Harada,
 Kojiro Eto, Hiromitsu Hayashi, Masaaki Iwatsuki,
 Shiro Iwagami, Yoshifumi Baba, Naoya Yoshida,
 Masakazu Yashiro, Mari Masuda, Jaffer A. Ajani,
 Patrick Tan, Hideo Baba, and Takatsugu Ishimoto
 This study elucidates a novel molecular mechanism through which Annexin A6 in CAF-EV activates FAK-YAP by stabilizing β1 integrin at the cell surface of gastric cancer cells and subsequently induces drug resistance.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>3359</td>
<td>Oncogene-Induced Senescence Limits the Progression of Pancreatic Neoplasia through Production of Activin A</td>
<td>Yajie Zhao, Zhichong Wu, Marie Chanal, Fabienne Guillaumond, Delphine Goehrig, Sophie Bachy, Moitza Principe, Audrey Ziverec, Jean-Michel Flaman, Guillaume Collin, Richard Tomasin, Arja Pasternack, Olli Rittvos, Sophie Vasseur, David Bernard, Ana Hennino, and Philippe Bertolino</td>
<td>This study identifies activin A to be a beneficial, senescence-secreted factor induced in pancreatic preneoplastic lesions, which limits their proliferation and ultimately slows progression into pancreatic cancers.</td>
</tr>
<tr>
<td>3372</td>
<td>Pharmacokinetic Profiles Determine Optimal Combination Treatment Schedules in Computational Models of Drug Resistance</td>
<td>Itziar Irurzun-Arana, Thomas O. McDonald, Inaki F. Trocóniz, and Franziska Michor</td>
<td>These findings introduce a computational modeling platform and software package for combination treatment strategies with flexible pharmacokinetic profiles and multidrug interaction curves that are estimated from data.</td>
</tr>
<tr>
<td>3383</td>
<td>Senescent Stromal Cells Promote Cancer Resistance through SIRT1 Loss-Potentiated Overproduction of Small Extracellular Vesicles</td>
<td>AC Liu Han, Qilai Long, Shenjun Li, Qixia Xu, Boyi Zhang, Xuefeng Dou, Min Qian, Yannasittha Jiramongkol, Jianming Guo, Liu Cao, Y. Eugene Chin, Eric W.-F. Lam, Jing Jiang, and Ya Sun</td>
<td>Senescent stromal cells produce a large number of sEVs to promote cancer resistance in therapeutic settings, a process driven by SIRT1 decline in stromal cells and ABCB4 augmentation in cancer cells. See related commentary, p. 3193</td>
</tr>
<tr>
<td>3399</td>
<td>Engineering the Human Fc Region Enables Direct Cell Killing by Cancer Glycan-Targeting Antibodies without the Need for Immune Effector Cells or Complement</td>
<td>AC Mireille Vankemmelbeke, Richard S. McIntosh, Jia Xin Chua, Thomas Kirk, Ian Daniels, Marilena Patsalidou, Robert Moss, Tina Parsons, David Scott, Gemma Harris, Judith M. Ramage, Ian Spendlove, and Lindy G. Durrant</td>
<td>Fc engineering enhances avidity and direct cell killing of cancer-targeting anti-glycan antibodies to create superior clinical candidates for cancer immunotherapy.</td>
</tr>
<tr>
<td>3413</td>
<td>NRAS Status Determines Sensitivity to SHP2 Inhibitor Combination Therapies Targeting the RAS–MAPK Pathway in Neuroblastoma</td>
<td>Ivette Valencia-Sama, Yagnesh Ladumor, Lynn Kee, Teresa Adderley, Gabriella Christopher, Claire M. Robinson, Yoshihito Kano, Michael Ohh, and Meredith S. Irwin</td>
<td>These findings suggest that conventional therapy-resistant, relapsed neuroblastoma may be effectively treated via combined inhibition of SHP2 and MEK or ERK of the RAS-MAPK pathway.</td>
</tr>
<tr>
<td>3436</td>
<td>Psychiatric Disorders Are Associated with Increased Risk of Sepsis Following a Cancer Diagnosis</td>
<td>AC Qianwei Liu, Huan Song, Therese M.-L. Andersson, Patrik K.E. Magnusson, Jianwei Zhu, Karin E. Smedby, and Fang Fang</td>
<td>These results call for extended prevention and surveillance of sepsis among patients with cancer psychiatric comorbidities.</td>
</tr>
<tr>
<td>3443</td>
<td>LDtrait: An Online Tool for Identifying Published Phenotype Associations in Linkage Disequilibrium</td>
<td>AC Shu-Hong Lin, Derek W. Brown, and Mitchell J. Machiela</td>
<td>The new GWAS search tool LDtrait will expedite discovery of shared genetic components underlying seemingly unrelated diseases and may offer novel insights into cancer research.</td>
</tr>
</tbody>
</table>
Neoadjuvant chemotherapy provides long-term clinical benefits to patients, especially when the primary tumor fully regresses before surgery. However, therapeutic benefits of these anticancer drugs may be limited by tumor-promoting host responses, which are frequently elicited by off-target effects of chemotherapy and are manifested as stromal cell senescence in the tumor microenvironment. Senescent stromal cells produce a large number of small extracellular vesicles (sEV) responsible for development of acquired cancer resistance. With confocal microscopy, active biosynthesis of sEVs by senescent stromal cells can be observed, as evidenced by remarkable expression of CD63 (green), a tetraspanin protein, and TSG101 (red), both typical biomarkers of sEVs. Nuclei were stained with DAPI (blue). For details, see article by Han and colleagues on page 3383.