








evaluated a cell line's ploidy as a predictor of its GRAOC value using a
linear regression model. Because molecular subtype of breast cancer
cell lines is known to influence drug sensitivity, we performed a
multivariate analysis, including the molecular subtype as well as an
interaction term between ploidy and drug category into the model.

RNA-seq analysis
The molecular subtype classification of all cell lines was available

from prior studies (34–37). Of these 44 cases, four were suspension
cell lines and were excluded from further analysis. Of the remaining
40 cell lines, 20 originated from primary breast cancer tumors and
were the focus of our analysis. Gene expression data were down-
loaded from CCLE. We used gene set variation analysis to model
variation in pathway activity across cell lines (38). Pathways for
which less than 10 gene members were expressed in a given cell lines
were not quantified. The gene membership of 1,417 pathways was
downloaded from the REACTOME database (ref. 39; v63) for this
purpose.

Results
High-ploidy breast cancer cell lines have increased metabolic
activity and cell motility

To better understand the phenotypic profile of high-ploidy cells,
we compared the ploidy of 41 breast cancer cell lines with their
response to 46 drugs. For a drug–response metric, we used the
integrated effect of the drug across a range of concentrations
estimated from the GRAOC (32, 33). We observed that cytotoxic
drugs and drugs inhibiting signal transduction pathways were at
opposite ends of the spectrum (Fig. 1A). Namely, ploidy was
negatively correlated with the GRAOC for several cytotoxic drugs
and positively correlated with the GRAOC of various mTOR inhi-
bitors, suggesting high-ploidy breast cancer cell lines tend to be
resistant to DNA-damaging agents, while sensitive to drugs target-
ing nutrient sensing and motility.

We built a multivariate regression model of drug sensitivities to test
the hypothesis that the relationship between ploidy and GRAOC was
different for cytotoxic drugs than for inhibitors of cell signaling

Figure 1.

Ploidy, pathway activity, and drug sensitivity across breast cancer cell lines from CCLE. A, High-ploidy breast cancer cell lines are resistant to cytotoxic drugs,
but tend to be more sensitive to inhibitors of mTOR, EGFR, and MAPK signaling pathways. Hereby ploidy is defined as the number of chromosomes in the cell
line's consensus karyotype, weighted by chromosome size. Only drugs with a Pearson correlation coefficient at or above 0.2 are shown here. B, Distribution of
ploidy within and across three molecular breast cancer subtypes. C, Regression coefficient of ploidy as predictor of GRAOC has opposite signs depending on
drug category across all subtypes. D, Distribution of ploidy across 20 primary, adherent breast cancer cell lines from CCLE. Ploidy is correlated with the activity
of pathways involved in metabolism of vitamins and cofactors (E) and hyaluronan metabolism (F). One cell line with available MEMA profiling data, HCC1954, is
highlighted (red arrow).
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pathways. Molecular subtype alone (Fig. 1B), could explain 0.4% of
the variability in GRAOC z-scores across cell lines (adjusted R2 ¼
0.0044; P ¼ 0.026). Including ploidy into the model did not improve
its predictive accuracy (adjusted R2 ¼ 0.0037; P ¼ 0.058). However,
an interaction term between ploidy and drug category (cytotoxic:
27 drugs vs. signaling: 16 drugs) increased accuracy to explain 2.6%
of variability in drug sensitivity across cell lines (adjusted R2 ¼ 0.026;
P < 1e-5; Fig. 1C). The same improvement from an interaction term
between ploidy and drug category was observed in an independent
dataset of half-maximal inhibitory concentration (IC50) values of
34 cytotoxic drugs and 51 signaling inhibitors obtained from the
Genomics of Drug Sensitivity in Cancer database (Supplementary
Fig. S2; ref. 40).

We then focused on a subset of the aforementioned 41 cell
lines, namely those that had been established from primary breast
cancer tumors as adherent cells (20 cell lines; Fig. 1D), and we
quantified their pathway activity (see Materials and Methods). A
total of 27 pathways were correlated to ploidy at a significant
P value (jPearson rj � 0:44; P ≤ 0.05; Supplementary Table S3).
The strongest correlations were observed for metabolic pathways
such as hyaluronan metabolism and metabolism of vitamins
(Fig. 1E and F). Hyaluronic acid is a main component of the
ECM and its synthesis has been shown to associate with cell
migration (41, 42).

These results support a model that connects high ploidy with both
the chemotactic ability and metabolic energy deficit of a cell.

Infiltration of homogeneous populations
Model design was guided by the goal to describe growth dynam-

ics along two axes: from random to directed cell motility and
from homogeneous to heterogeneous cell compositions (Materials
and Methods, Eqs. D–F). While the last section will step into
the second axis, the following two subsections distinguish scenarios
along the first axis: (i) “homogeneous nutrient environments”
are environments in which random cell motility dominates
throughout population growth and (ii) “heterogeneous nutrient
environments” imply the formation of gradients, which cause cells
to move in a directed fashion, as is the case during cellular growth
on an ECM.

Homogeneous nutrient environments
When the diffusion of the nutrient occurs at amuch faster time scale

than the actions taken by cells, we can assume that at the time scale of
cells, the nutrient is essentially uniform in space. This simplification
allows us to neglect chemotactic/haptotactic motion and consider only
random cell motility as the driving force that spreads the cell density
throughout the dish.

We obtained analytic estimates for the degree of infiltration in a
homogeneous environment that lay the groundwork for new pre-
dictions. To arrive at Eq. G–Eq. H, we employed the approxima-
tions that diffusion of energy molecules (e.g., glucose) is fast relative
to cell movement and that the cells' movement through the dish can
be approximated by a traveling wave (43). These assumptions were
verified by comparing the front estimates with results from the full
numerical model (Eqs. D–F; Fig. 2A and B).

An interesting alternative to tracking the wave over time is to
assume it travels as a wave, but only record the density after the
system has reached uniformity. If the death rate is much smaller than
the time needed for the cells to spread uniformly, we can bound the
degree of infiltration that occurred by only knowing the uniform
density of cells (equation; ref. 4; Fig. 2C).

These analytic solutions point to scaling relationships for the speed
of the moving front. For highly efficient energy-using cell lines
(� � 1; Fig. 2D), the front will evolve at a speed nearly independent
of energy. In contrast, for large � 	 1, the speed of the front falls off
as 1=

ffiffiffi
�

p
. These predictions of the behavior of infiltration on para-

meters can be investigated experimentally.

Heterogeneous nutrient environments
Assumptions made in the prior section apply to standard cell

cultures of adhesive cells in a typical cell culture dish, where energetic
resources diffuse so fast that gradients do not form. These assumptions
break down during cellular growth on an ECM. Binding to the ECM
can cause soluble factors (like HGF) to act and signal as solid phase
ligands (44, 45). Proteolytic degradation of these ECMs then creates
haptotactic gradients. Figure 1 includes HCC1954, a near-tetraploid
breast cancer cell line, whose growth on various ECMs has been
measured via MEMA profiling. We analyzed HCC1954 and looked
to determine whether our mathematical model can explain its spatial
growth patterns. MEMA profiling resulted in considerable variability
of growth patterns across different ECMs (Fig. 3A and B).

We projected two-dimensional (2D) spatial distributions measured
on the MEMA array onto one dimension (1D; Fig. 3C), rendering
them comparable with those obtained from our simulations (Fig. 3D
and E). For each simulation/ECM pair, we calculated the distance
between in silico and in vitro spatial cell distributions using the
Wasserstein metric (Fig. 3C and F) and ranked simulations by their
minimum distance across ECMs. The top 2.3% simulation parameters
were then stratified by the ECM whose spatial pattern they best
resembled and compared with uniform prior parameter distributions
(Fig. 3D and E). Seventy-five percent of the ECMs accounted for only
1.55% of the top simulations. The tendency of cells on these ECMs to
grow in a toroidal shape was strong, suggesting it may be the
consequence of nonuniform printing of ECMs onto the array. We
concluded that, ourmodel cannot explain the growth patterns on those
ECMs well and focused our attention on the remaining 12 ECMs,
represented by 3,429 simulations. We refer to the parameters of these
simulations as inferred parameter space. Principal component anal-
ysis, uniformmanifold approximation andprojection (UMAP; ref. 46),
and density clustering (47) of the inferred parameter space revealed
three clusters (Fig. 3G), with different ECMs segregating mainly into
different clusters (Fig. 3H).

The two largest clusters differed mostly in their chemotactic/
haptotactic and energy diffusion coefficients; while the small cluster
stood out by a high sensitivity to low energy and fast chemotactic/
haptotactic response (Fig. 3I). Overall, all five model parameters
showed significant differences between the three clusters, suggesting
they all contribute to distinction between ECM growth patterns
(Fig. 3I). This was further affirmed when looking at the % variance
explained per principal component per parameter (Fig. 3J). To
formalize parameter sensitivity analysis independent of ECMs, we
also calculated the Sobol index (48) of each parameter. The Sobol
index quantifies how much of the variability in spatial cell con-
centration is explained by each parameter, while accounting for all
its interaction effects. Each parameter contributed to significant
variance (Sobol index > 0.02; ref. 48) in at least one of three spatial
statistics (Fig. 3K): skewness, confluence, and gradient near the
edge of the ECM.

We observed substantial differences in chemotactic/haptotactic
coefficients and energy consumption rates between ECMs (Sup-
plementary Fig. S3). To query the biological significance of this
variability, we quantified the expression of the 12 ECMs in
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the HCC1954 cell line (Materials and Methods). Two of the five
inferred ECM-specific model parameters were correlated with
RNA-seq–derived expression of the corresponding ECM: energy
consumption rate (Pearson r ¼ �0.657; P ¼ 0.028) and sensitivity
to low energy (Pearson r ¼ 0.562; P ¼ 0.071), although latter fell
short above significance (Supplementary Fig. S4).

In summary, the posterior distributions of model parameters
represent a substantial departure from the uniform priors and could
explain a significant proportion of growth conditions on the HGF-
exposed MEMA array. This approach identified regions of interest in
the parameter search space, allowing us to focus further simulations on
biologically relevant chemotactic/haptotactic coefficients and energy
diffusion rates.

Infiltration of heterogeneous, chemotactic populations
Growth of cells in a given ECM environment was measured across

13–30 replicates on the MEMA platform. While our model, when
calibrated to the corresponding ECM environment, could explain the

observed growth pattern in the majority of these replicates, a sub-
stantial fraction could not be explained by fixed choices of sensitivity to
low energy and directed cell motility (Supplementary Fig. S3). One
possibility that may explain this is HCC1954 is a heterogeneous cell
line, with clones of variable phenotypes coevolving. Representation of
these clones among the 31 cells that were on an average sampled for
each replicate may vary (Supplementary Fig. S5). This hypothesis is
supported by a bimodal distribution of DNA content observed among
replicating HCC1954 cells on individual ECM spots (Fig. 4A and B;
Supplementary Fig. S6A and S6B). If the HCC1954 population was
homogeneous, we would expect a unimodal distribution of DAPI
intensity among S-phase cells of this cell line. The observation of a
bimodal distribution among S-phase cells suggests that HCC1954 is
likely a polyploid cell line, that is, clones of variable ploidies coexist in
this cell line.

To better understand the growth dynamics in a polyploid popula-
tion, we used the two subpopulation version of our model, whereby
variable chemotactic abilities and energetic sensitivities of goer and

Figure 2.

Comparing analytic approximations of the degree of infiltration with those obtained from simulations. A and B, Traveling wave solutions at energy
consumption rates a ¼ 1.5 (A) and a ¼ 3.5 (B). C, Top and bottom boundaries of traveling wave solutions estimated from equilibration are shown as a function
of consumption rate. Approximation is found by bottom and top bound L ¼ 0,1 from equation D. D, Phase diagram of energy consumption and front location
using the derived coupled system (Eqs. G and H). A–D, All approximations and simulations assume energy is uniformly distributed at all times, that is,
chemotaxis does not take place. Parameter values for initial seeding radius (r0), dish radius (R), and sensitivity to low energy (j) were set to 3, 10, and 0.05
respectively. Red, leading edge of wave (estimated by finding value of cell concentration closest to 0.01); blue, midpoint of wave (estimated by finding value
of cell concentration closest to 0.5); purple, average of red and blue; and black lines are approximations based on analytic solutions. Time is in units of the

maximal growth rate of the given cell line. Front location is given in units of the characteristic length,
ffiffiffiffiffiffiffiffi
x=l

p
.
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Figure 3.

Model calibration using MEMA profiling of HCC1954 cells. A–C, Experimentally measured data. Variability in cell growth patterns across ECMs is demonstrated via two
example ECMs, CDH1 (A) and GAP43 (B). The average local cell densities are displayed for both (color legend). C, Projecting their 2D spatial distributions onto 1D reveals
enrichment of cells at theedgeof theECMspot forGAP43,but not forCDH1.D–F,Simulateddata.Comparingpriordistributionof chemotactic coefficients (D) and sensitivity
to lowenergy (E) to ECM-specific posterior distributions reveals clear differences betweenCDH1 andGAP43 for both parameters. F,Maximum-likelihoodparameter choices
for CDH1 and GAP43 result in distinct spatial distributions between the two ECMs, each of which resemble the measured distributions (C). G–I, ECM-specific model
parameters. SimulationswerecomparedwitheachmeasuredECM-specificgrowthpatternand rankedby theirmaximumsimilarity.GandH,Thefivemodelparameters from
the top2.3% simulationswereprojectedontoUMAPspace, revealing threeclusters. Color-codingsimulationsby theECMresponsible for their presence in the top simulations
suggest enrichment of most ECMs to only a single cluster (G).H, This was confirmedwhen comparing cluster membership across the 12 represented ECMs. I,All fivemodel
parameters (x-axis) show significant differences between the three clusters. 



 , P ≤ 0.0001. J and K, Parameter sensitivity analysis. J, The % variance explained per
parameter shows significant contribution of all fivemodel parameters to at least one of the first three principal components (PC). K, The Sobol index (x-axis) tells us which
parameter best explains which aspect of the cells' spatial distribution (color code), its skewness, confluence, or gradient near the edge.
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grower subpopulations competewith one another (Eqs. D–F).Weused
fixed values for energy diffusion and consumption rates as informed by
model calibration (Fig. 3B) and varied sensitivity to low energy and
chemotactic ability of both goer and grower, subject to Eqs. D–F
(Table 1; Supplementary Table S1). We initially used the same
spatial and temporal domains as during model calibration, but
concluded that the implied duration of the experiment (3 days) was
too short for dynamics between the two populations to manifest.
Each MEMA spot has a low capacity, whereby confluence is reached
at no more than a few hundreds of cells. Such a small number of
cells will not exhibit wave-like behavior and, therefore, will not
suffice for spatial structure to emerge. We, therefore, extended
temporal and spatial domains of our simulations, seeding cells at
a lower confluence and letting them grow onto the entire energy
domain until they consumed all available energy (average of
127 days; Table 1).

We observed a nonmonotonic relation between the goer's chemo-
tactic ability and the speed with which the metapopulation invades
the dish, with intermediate values being the least beneficial to its
growth and spread (Fig. 4C). Temporal analysis of the simulations
(Supplementary Data S4–S6) revealed that if the goer's chemotactic
motility is too high, it will leave the center of the dish too soon,

leaving room for the grower to expand locally (Fig. 4D). In contrast,
if the goer's motility is too low, it will miss the window of oppor-
tunity to ensure its dominance further away from the center of the
dish while energy is still abundant. As a consequence, it will be
outgrown by the grower at the edge of the dish once energy becomes
sparse (Fig. 4E). Only when the goer has an intermediate motility,
does the grower persistently coexist with it, both at the center and
edge of the dish (Fig. 4F).

Discussion
Models of infiltration are typically formulated under two critical

assumptions. First, energy production and consumption are nonuni-
form, leading to the formation of an energy gradient (49–51); or
second, energy consumption is very slow compared with production,
leading to an essentially infinite energetic resource (52). Here, we
formulated a generalizedmodel of infiltrationwhen energy isfinite and
investigated its behavior along a spectrum of scenarios, from perma-
nent energy uniformity to scenarios where this uniformity is gradually
lost. The model derivation does not assume a particular dimension
(e.g., 2D in vitro experiments vs. in vivo or 3D spheroid experiments).
Many parameters that were valid in 2Dwill also extend naturally to 3D.

Figure 4.

Internal competition of coexisting subpopulations for same space slows down invasion of the metapopulation. A, DNA content and cell-cycle state of 162 cells
growing on HGF-exposed ICAM1.B,DAPI intensity of 58 replicating (EdUþ) cells shows a bimodal distribution, indicating the presence of two subpopulations, a low-
ploidy population (grower) comprising approximately 55% cells and a high-ploidy population (goer) comprising approximately 45% cells.C,Arms race between the
grower's energetic sensitivity (y-axis) and the goer's chemotactic ability (x-axis) reduces infiltration distance (color bar). Red circles outline parameter combinations
of interest explored inD–F.D–F, Spatial distribution of goer and grower for parameter values outlined in C. Dotted lines outline extreme trajectories of expected cell
concentrations due to incertitude in initial goer/grower proportions, as estimated from the silhouette coefficient of cells in B (see also Supplementary Fig. S6B). D,
High chemotactic motility will cause the goer to leave the center of the dish too soon, leaving room for the grower to expand there. E,With an intermediate motility,
the goer succeeds inmaintaininghigh representation both at the center andedgeof thedish.F, Lowmotilitywill prevent thegoer fromgaining a sufficient spatial lead
from the grower while energy is still abundant, and it will lose dominance at the edge of the dish once energy becomes sparse. Red arrows indicate maximum
infiltration distance achieved by either of the two populations.
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For example, we would not expect a difference in consumption rates or
half maximal growth rates of the cells. However, energy diffusion (G E)
or random cell motion (G ) will be higher because of the increased
degree of freedom (53). When energy is uniformly distributed at all
times and the time scale for cell death is substantially longer than that
of cell motility and birth, our results suggest that the degree of
infiltration can be approximated using the cells' density at equilibra-
tion of movement and growth (Fig. 2C).

With an energy gradient that becomes steeper over time, our
analytic approximations no longer hold, as directed cell movement
becomes nonnegligible. For this scenario, we leveraged MEMA
profiling to inform regions of interest in the parameter search
space. These regions of interest are relevant for cellular growth on
a variety of HGF-exposed ECM proteins. We observed correlations
between inferred model parameters and RNA-seq–derived signa-
tures, even though the latter were not used during parameter
inference. A potential explanation for the negative correlation
between ECM-specific energy consumption and expression is that
our model does not account for the possibility that cells can replace
the ECM they degrade. The slower the rate of this replacement is,
the higher the consumption rate appears to be. On the other hand,
the more dependent cells are on an ECM for growth, the faster they
must replace it, potentially explaining a positive correlation between
ECM-specific expression and sensitivity to low energy.

When calibrating our model to a given ECM environment,
growth patterns of a substantial fraction of replicates of that ECM
could not be explained by fixed choices of sensitivity to low energy
(Supplementary Fig. S3). A potential explanation for this is variable
cell compositions across experimental replicates. An alternative
explanation is that this variability stems from artifacts that arise
during nonuniform printing of ECMs onto the array—the so-called
ring effect. However, a bimodal distribution was also observed in
the DNA content of replicating cells, which is not affected by
potential printing artifacts. The second peak of this bimodal dis-
tribution was wider, consistent with the fact that high-ploidy cells
with more DNA need longer to replicate.

The cell line, HCC1954, is described as a hypertetraploid cell line
with an average DNA content of 4.2 (30). However, this average value
may be misleading, as suggested by stark variability in nuclei sizes
(Fig. 4A). Despite a wealth of genomic information generated for this
cell line (30), to the best of our knowledge, no prior reports indicate
whether or not the cell line is polyploid.We and others have found that
high ploidy is an aneuploidy-tolerating state that accompanies intra-
tumor heterogeneity in vivo and in vitro (5, 54, 55). Our results suggest
that HCC1954 is likely polyploid.

One event that could have led to this polyploid state is WGD. In
contrast to cell lines, WGD events in primary tumors are mostly
clonal, not subclonal (5, 6, 10), clones carrying a doubled genome
often sweep over the population, such that by the time the tumor is
detected, the diploid ancestor no longer exists. A related scenario is
advanced, therapy-exposed tumors shown to revert to genomic
stability, potentially bringing a WGD population back to a genomic
state that more closely resembles its diploid ancestral state (56).
The model presented here can investigate how dynamics between
the two subpopulations unfold in both of these scenarios—early,
shortly after the WGD or late, after therapy exposure. This would
characterize what circumstances prevent the WGD carrying
clone from becoming dominant or from retaining its dominance
and could help explain WGD incidence in primary and recurrent
tumors.

If spatial and temporal domains were to be extended beyond the
configuration of MEMA spots, our simulations predict that spatial
segregation of two coexisting subpopulations according to their
ploidy is a likely scenario and depends on the energy consumption
rate. Our model can easily be extended to more than two sub-
populations, for example, to include a subpopulation of normal
cells. For each additional cell type, a new compartment can be added
to the model, with growth- and motion-related parameters that are
specific to the corresponding cell type. However, the model cur-
rently does not incorporate mutations, that is, the process of
generating new clonal lines. A next step will be to extend our
model to include mutation events, specifically chromosome mis-
segregations that contribute extensively to diversify ploidy of a
population (57, 58). The additional DNA content of high-ploidy
cells, although energetically costly, brings a masking effect against
the deleterious consequences of chromosome losses (10). This
duality may explain the higher sensitivity of high-ploidy cells to
glycolysis inhibitors and their lower sensitivity to cytotoxic drugs
reported previously in glioblastoma (59).

In-line with prior reports, we found that increased resistance
of breast cancer cell lines to cytotoxic drugs was associated with
high ploidy. In contrast, high-ploidy breast cancer cell lines were
sensitive to inhibitors of signal transduction pathways, including
EGFR and especially mTOR signaling. A commonality among
those pathways is their contribution to a cell's chemotactic
response (60–62), suggesting opportunities to tune chemotaxis.
mTOR inhibitors (mTOR-I), such as rapamycin, significantly
decrease migration of breast cancer cells in a dose-dependent
manner (63, 64). Rapamycin inhibits cell motility by a mechanism
similar to that by which it inhibits cell proliferation (65), suggest-
ing that the mTOR pathway lies at the intersection of a cell's
decision between proliferation and migration. If high ploidy is
indeed a characteristic specific to goer-like cells, then mTOR-Is are
likely affecting this cell type (Fig. 1A, E, and F), and could be used
to inhibit its chemotactic response, thereby moving the population
up the x-axis of Fig. 4C. Delaying chemotactic response of highly
chemotactic cells could slow down invasion by maximizing com-
petition within a polyploid population. If, on the other hand,
chemotactic response of high-ploidy cells is already at an interme-
diate level, our simulation suggests that, further reduction may
accelerate invasion of low-ploidy cells. For such scenarios, thera-
peutic strategies that include an mTOR-I may not be successful.
Experiments will be needed to verify these in silico results in vitro.
Knowing how coexisting clones with differential drug sensitivities
segregate spatially can offer opportunities to administer these drug
combinations more effectively.
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